
RefGuideR4.1 09.01.00 en

1 of 135

SOFTWARE

KR C1 / KR C2 / KR C3

Reference Guide

Release 4.1

2 of 135

RefGuideR4.1 09.01.00 en

e Copyright KUKA Roboter GmbH
This documentation or excerpts therefrommay not be reproduced or disclosed to third parties without the express permission of the publishers.
Other functions not described in this documentation may be operable in the controller. The user has no claim to these functions, however, in
the case of a replacement or service work.
We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies
cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a
regular basis, however, and necessary corrections will be incorporated in subsequent editions.
Subject to technical alterations without an effect on the function.

PD Interleaf

3 of 135

RefGuideR4.1 09.01.00 en

Contents

1 General 9. .

1.1 Typographical conventions 9. .

1.2 Graphic conventions 10. .

2 Reference section 11. .

2.1 Fundamentals 11. .
2.1.1 Programs, data lists and modules 11. .
2.1.2 Names and literals 11. .
2.1.3 Data types 11. .
2.1.3.1 Simple data types 11. .
2.1.3.2 Implicit type conversion 12. .
2.1.3.3 Predefined data types 12. .
2.1.3.4 Implicit data type assignment 12. .
2.1.4 Constants 12. .
2.1.5 Variables 13. .
2.1.5.1 System variables 13. .
2.1.6 Operators 13. .
2.1.6.1 Arithmetic operators 13. .
2.1.6.2 Logic operators 13. .
2.1.6.3 Relational operators 13. .
2.1.6.4 Bit operators 13. .
2.1.6.5 Geometric operator 13. .
2.1.6.6 Priority of operators 14. .
2.1.7 Declaration 14. .
2.1.8 Initialization 14. .
2.1.9 Expression 14. .
2.1.10 Statement 14. .
2.1.11 Comment 14. .
2.1.12 Motion programming 15. .
2.1.12.1 PTP motions (PTP = Point--To--Point) 15. .
2.1.12.2 CP motions (CP = Continuous Path) 15. .
2.1.13 Control structures 15. .
2.1.14 Subprograms 15. .
2.1.15 Functions 15. .
2.1.16 Block structure 15. .
2.1.17 Areas of validity 16. .
2.1.18 Keywords 16. .

2.2 Command index 20. .
2.2.1 ANIN 20. .
2.2.1.1 Brief information 20. .
2.2.1.2 Syntax 20. .
2.2.1.3 Description 20. .
2.2.1.4 Example 21. .
2.2.2 ANOUT 22. .
2.2.2.1 Brief information 22. .
2.2.2.2 Syntax 22. .
2.2.2.3 Description 22. .
2.2.2.4 Example 23. .

Reference Guide

4 of 135

RefGuideR4.1 09.01.00 en

2.2.3 BRAKE 24. .
2.2.3.1 Brief information 24. .
2.2.3.2 Syntax 24. .
2.2.3.3 Description 24. .
2.2.3.4 Example 24. .
2.2.4 CCLOSE 25. .
2.2.4.1 Brief information 25. .
2.2.4.2 Syntax 25. .
2.2.4.3 Description 25. .
2.2.4.4 Example 25. .
2.2.5 CHANNEL 27. .
2.2.5.1 Brief information 27. .
2.2.5.2 Syntax 27. .
2.2.5.3 Description 27. .
2.2.5.4 Example 28. .
2.2.6 CIRC 29. .
2.2.6.1 Brief information 29. .
2.2.6.2 Syntax 29. .
2.2.6.3 Description 31. .
2.2.6.4 Example 33. .
2.2.7 CIRC_REL 34. .
2.2.7.1 Brief information 34. .
2.2.7.2 Syntax 34. .
2.2.7.3 Description 36. .
2.2.7.4 Example 37. .
2.2.8 CONFIRM 38. .
2.2.8.1 Brief information 38. .
2.2.8.2 Syntax 38. .
2.2.8.3 Description 38. .
2.2.8.4 Example 39. .
2.2.9 CONTINUE 40. .
2.2.9.1 Brief information 40. .
2.2.9.2 Syntax 40. .
2.2.9.3 Description 40. .
2.2.9.4 Example 40. .
2.2.10 COPEN 41. .
2.2.10.1 Brief information 41. .
2.2.10.2 Syntax 41. .
2.2.10.3 Description 41. .
2.2.10.4 Example 41. .
2.2.11 CREAD 42. .
2.2.11.1 Brief information 42. .
2.2.11.2 Syntax 42. .
2.2.11.3 Description 44. .
2.2.12 CWRITE 48. .
2.2.12.1 Brief information 48. .
2.2.12.2 Syntax 48. .
2.2.12.3 Description 49. .
2.2.12.4 Example 51. .
2.2.13 DECL 53. .
2.2.13.1 Brief information 53. .
2.2.13.2 Syntax 53. .
2.2.13.3 Description 54. .
2.2.13.4 Example: 56. .

5 of 135

RefGuideR4.1 09.01.00 en

2.2.14 DEF ... END 57. .
2.2.14.1 Brief information 57. .
2.2.14.2 Syntax 57. .
2.2.14.3 Description 58. .
2.2.14.4 Example: 59. .
2.2.15 DEFDAT ... ENDDAT 60. .
2.2.15.1 Brief information 60. .
2.2.15.2 Syntax 60. .
2.2.15.3 Description 60. .
2.2.15.4 Example: 61. .
2.2.16 DEFFCT ... ENDFCT 63. .
2.2.16.1 Brief information 63. .
2.2.16.2 Syntax 63. .
2.2.16.3 Description 64. .
2.2.16.4 Example 65. .
2.2.17 DIGIN 66. .
2.2.17.1 Brief information 66. .
2.2.17.2 Syntax 66. .
2.2.17.3 Description 66. .
2.2.17.4 Examples 67. .
2.2.18 ENUM 68. .
2.2.18.1 Brief information 68. .
2.2.18.2 Syntax 68. .
2.2.18.3 Description 68. .
2.2.18.4 Example 69. .
2.2.19 EXIT 70. .
2.2.19.1 Brief information 70. .
2.2.19.2 Syntax 70. .
2.2.19.3 Description 70. .
2.2.19.4 Example 70. .
2.2.20 EXT 71. .
2.2.20.1 Brief information 71. .
2.2.20.2 Syntax 71. .
2.2.20.3 Description 71. .
2.2.20.4 Example 72. .
2.2.21 EXTFCT 73. .
2.2.21.1 Brief information 73. .
2.2.21.2 Syntax 73. .
2.2.21.3 Description 73. .
2.2.21.4 Example 74. .
2.2.22 FOR ... TO ... ENDFOR 76. .
2.2.22.1 Brief information 76. .
2.2.22.2 Syntax 76. .
2.2.22.3 Description 76. .
2.2.22.4 Example 77. .
2.2.23 GOTO 78. .
2.2.23.1 Brief information 78. .
2.2.23.2 Syntax 78. .
2.2.23.3 Description 78. .
2.2.23.4 Example 78. .
2.2.24 HALT 79. .
2.2.24.1 Brief information 79. .
2.2.24.2 Syntax 79. .
2.2.24.3 Description 79. .

Reference Guide

6 of 135

RefGuideR4.1 09.01.00 en

2.2.25 IF ... THEN ... ENDIF 80. .
2.2.25.1 Brief information 80. .
2.2.25.2 Syntax 80. .
2.2.25.3 Description 80. .
2.2.25.4 Example 80. .
2.2.26 IMPORT ... IS 81. .
2.2.26.1 Brief information 81. .
2.2.26.2 Syntax 81. .
2.2.26.3 Description 81. .
2.2.26.4 Example 82. .
2.2.27 INTERRUPT DECL ... WHEN ... DO 83. .
2.2.27.1 Brief information 83. .
2.2.27.2 Syntax 83. .
2.2.27.3 Description 84. .
2.2.27.4 Example 85. .
2.2.28 INTERRUPT 86. .
2.2.28.1 Brief information 86. .
2.2.28.2 Syntax 86. .
2.2.28.3 Description 86. .
2.2.28.4 Example 88. .
2.2.29 LIN 90. .
2.2.29.1 Brief information 90. .
2.2.29.2 Syntax 90. .
2.2.29.3 Description 91. .
2.2.29.4 Example 93. .
2.2.30 LIN_REL 94. .
2.2.30.1 Brief information 94. .
2.2.30.2 Syntax 94. .
2.2.30.3 Description 95. .
2.2.30.4 Example 95. .
2.2.31 LOOP ... ENDLOOP 96. .
2.2.31.1 Brief information 96. .
2.2.31.2 Syntax 96. .
2.2.31.3 Description 96. .
2.2.31.4 Example 96. .
2.2.32 PTP 97. .
2.2.32.1 Brief information 97. .
2.2.32.2 Syntax 97. .
2.2.32.3 Description 97. .
2.2.32.4 Example 100. .
2.2.33 PTP_REL 101. .
2.2.33.1 Brief information 101. .
2.2.33.2 Syntax 101. .
2.2.33.3 Description 101. .
2.2.33.4 Example 102. .
2.2.34 PULSE 103. .
2.2.34.1 Brief information 103. .
2.2.34.2 Syntax 103. .
2.2.34.3 Description 103. .
2.2.34.4 Example 104. .
2.2.35 REPEAT ... UNTIL 106. .
2.2.35.1 Brief information 106. .
2.2.35.2 Syntax 106. .
2.2.35.3 Description 106. .

7 of 135

RefGuideR4.1 09.01.00 en

2.2.35.4 Example 106. .
2.2.36 RESUME 108. .
2.2.36.1 Brief information 108. .
2.2.36.2 Syntax 108. .
2.2.36.3 Description 108. .
2.2.36.4 Example 109. .
2.2.37 RETURN 110. .
2.2.37.1 Brief information 110. .
2.2.37.2 Syntax 110. .
2.2.37.3 Description 110. .
2.2.37.4 Example 111. .
2.2.38 SIGNAL 112. .
2.2.38.1 Brief information 112. .
2.2.38.2 Syntax 112. .
2.2.38.3 Description 112. .
2.2.38.4 Example 113. .
2.2.39 SREAD 114. .
2.2.39.1 Brief information 114. .
2.2.39.2 Syntax 114. .
2.2.39.3 Description 114. .
2.2.39.4 Example 116. .
2.2.40 STRUC 117. .
2.2.40.1 Brief information 117. .
2.2.40.2 Syntax 117. .
2.2.40.3 Description 117. .
2.2.40.4 Example 118. .
2.2.41 SWITCH ... case ... ENDSWITCH 119. .
2.2.41.1 Brief information 119. .
2.2.41.2 Syntax 119. .
2.2.41.3 Description 119. .
2.2.41.4 Example 120. .
2.2.42 SWRITE 121. .
2.2.42.1 Brief information 121. .
2.2.42.2 Syntax 121. .
2.2.42.3 Description 121. .
2.2.42.4 Example 123. .
2.2.43 TRIGGER when distance ... do 124. .
2.2.43.1 Brief information 124. .
2.2.43.2 Syntax 124. .
2.2.43.3 Description 124. .
2.2.43.4 Example 125. .
2.2.44 TRIGGER when PATH ... do 127. .
2.2.44.1 Brief information 127. .
2.2.44.2 Syntax 127. .
2.2.44.3 Description 128. .
2.2.45 WAIT FOR 130. .
2.2.45.1 Brief information 130. .
2.2.45.2 Syntax 130. .
2.2.45.3 Description 130. .
2.2.45.4 Example 130. .
2.2.46 WAIT SEC 131. .
2.2.46.1 Brief information 131. .
2.2.46.2 Syntax 131. .
2.2.46.3 Description 131. .

Reference Guide

8 of 135

RefGuideR4.1 09.01.00 en

2.2.46.4 Example 131. .
2.2.47 WHILE ... ENDWHILE 132. .
2.2.47.1 Brief information 132. .
2.2.47.2 Syntax 132. .
2.2.47.3 Description 132. .
2.2.47.4 Example 132. .

2.3 System functions 134. .
2.3.1 VARSTATE() 134. .
2.3.1.1 Brief information 134. .
2.3.1.2 Syntax 134. .
2.3.1.3 Description 134. .
2.3.1.4 Example 135. .

1 General

9 of 135

RefGuideR4.1 09.01.00 en

1 General

1.1 Typographical conventions

The following type style is used in this handbook for displaying the syntax:

Example Explanation

IF, THEN, TRIGGER, ... Necessary keywords and characters are
printed as upper--case characters in bold
type.

Signal, Interface_Name,
Data Type, ...

The names of the command options are
printed in bold italic characters, in upper and
lower--case.

Name, Distance, Time,
Priority, ...

Terms printed in upper/lower--case
characters must be replaced by
program--specific information.

DELAY = Time , �ELSE , ... Elements in square brackets are optional.

+|- Mutually exclusive options are separated by
the OR sign “|”.

Reference Guide

10 of 135

RefGuideR4.1 09.01.00 en

1.2 Graphic conventions

The following symbols are used throughout this handbook:

The “EXAMPLE” symbol is found by descriptions and illustrations of practical examples.

Cross--reference to other sections or chapters in the handbook containing further informa--
tion and explanations.

Information which is of particular significance or is useful for greater understanding.

The “TIP” symbol is used to identify text passages containing recommendations and
advice to make your work easier.

The “NOTE” icon is used to emphasize general or additional information on a particular
subject or highlights special features.

The “CAUTION!” symbol is used where failure to fully and accurately observe operating
instructions, work instructions, prescribed sequences and the like could result in damage
to the robot system.

This symbol is used where failure to fully and accurately observe operating instruc--
tions, work instructions, prescribed sequences and the like could result in injury or
a fatal accident.

2 Reference section

11 of 135

RefGuideR4.1 09.01.00 en

2 Reference section

2.1 Fundamentals

2.1.1 Programs, data lists and modules

The KRC saves the program code in files with the file extension SRC. Permanent data are
saved in so--called data lists, files with the file extension DAT. A module consists of an SRC
file and a DAT file with the same name.

2.1.2 Names and literals

A literal represents an actual value, e.g. the symbol “1” represents the number “one”, while
a name or designation represents a data object containing a value (e.g. a variable) or a fixed
value (e.g. a constant).

The following restrictions apply to a variable or constant name:

G It can have a maximum length of 24 characters.

G It can consist of letters (A--Z), numbers (0--9) and the signs “_” and “$”.

G It must not begin with a number.

G It must not be a keyword.

2.1.3 Data types

There are two different groups of data types: data types, such as INT, which are predefined
in the system, and user--defined data types, which in turn are based on the data typesENUM
and STRUC.

These two groups differ in practice in two respects:

G Data types predefined in the system are valid globally, while user--defined data types
are only visible locally unless the keywordGLOBAL has been used in their declaration
or they have been declared in the $CONFIG.DAT file.

G The keyword DECL can be omitted when declaring data types that are predefined in
the system.

2.1.3.1 Simple data types

Data type Keyword Meaning Range of values

Integer INT Integer --2ΠΝ--1 ... 2ΠΝ--1

Real REAL Floating--point

number

�1.1E--38...�3.4E+38

Boolean BOOL Logic state TRUE, FALSE

Character CHAR Character ASCII character

Reference Guide

12 of 135

RefGuideR4.1 09.01.00 en

2.1.3.2 Implicit type conversion

The result of an arithmetic operation is only INT if both operands are of the data type INT. If
the result of an integer division is not an integer, it is cut off at the decimal point.

If one of the operands is of the data type REAL, the result too will be of the data type REAL.

Operands INT REAL
INT INT REAL
REAL REAL REAL

2.1.3.3 Predefined data types

The following data types for motion programming are predefined in the controller software.

STRUC AXIS REAL A1, A2, A3, A4, A5, A6

The components A1 to A6 of the structure AXIS are angle values (rotational axes) or transla--
tion values (translational axes) for the axis--specific movement of robot axes 1 to 6.

STRUC E6AXIS REAL A1, A2, A3, A4, A5, A6, E1, E2, E3, E4, E5, E6

The angle values or translation values for the external axes are stored in the additional
components E1 to E6.

STRUC FRAME REAL X, Y, Z, A, B, C

The space coordinates are stored in X, Y, Z and the orientation of the coordinate system is
stored in A, B, C.

STRUC POS REAL X, Y, Z, A, B, C, INT S, T

The additional components S (Status) and T (Turn) can be used for the unambiguous defini--
tion of axis positions.

STRUC E6POS REAL X, Y, Z, A, B, C, E1, E2, E3, E4, E5, E6, INT S, T

2.1.3.4 Implicit data type assignment

If a variable name is used, without it first being declared in a KRL program, it is automatically
assigned the data type POS.

Implicit data type assignment should not be used deliberately as it makes programs less
easy to follow.

2.1.4 Constants

Aconstant has a name, a data type anda fixed valuewhich cannot be altered following initiali--
zation.

Constants must be defined and initialized in a data list.

In order to be able to use constants, the constant option CONST_KEY in the file
Progress.ini, in the INIT directory, must be set to TRUE:
CONST_KEY=TRUE

2 Reference section (continued)

13 of 135

RefGuideR4.1 09.01.00 en

2.1.5 Variables
A variable has a name, a data type and a memory area in which its changeable value is
stored.

2.1.5.1 System variables

The names of the KRL system variables all begin with the character “$”; this character must
not, therefore, be used at the start of user variable names.

2.1.6 Operators

The following operators are available for the manipulation of data objects:

2.1.6.1 Arithmetic operators

Symbol Function
+ Addition
-- Subtraction
/ Division
* Multiplication

2.1.6.2 Logic operators

Symbol Function
NOT Inversion
AND Logic AND
OR Logic OR
EXOR Exclusive OR

2.1.6.3 Relational operators

Symbol Function
== Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to

2.1.6.4 Bit operators

Symbol Function
B_NOT Bit--by--bit inversion
B_AND Bit--by--bit AND operation
B_OR Bit--by--bit OR operation
B_EXOR Bit--by--bit exclusive OR operation

2.1.6.5 Geometric operator

Symbol Function
: Performs the vector addition of frames (geometric addition)

between the data types FRAME and POS.

Reference Guide

14 of 135

RefGuideR4.1 09.01.00 en

2.1.6.6 Priority of operators

In complex expressions with more than one operator, the individual expressions are
executed in the order of priority of the operands.

Priority Operator
1 (highest) NOT, B_NOT
2 *, /
3 +, --
4 AND, B_AND
5 EXOR, B_EXOR
6 OR, B_OR
7 (lowest) ==, <, >, <=, >=, <>

The following rules also apply:

G Bracketed expressions are processed first.

G Non--bracketed expressions are executed in the order of priority of their operators.

G Logic operations with operators of the same priority are executed from left to right.

2.1.7 Declaration

A declaration assigns a data type to a name.

2.1.8 Initialization

Initialization assigns a value to a declaration.

2.1.9 Expression

An expression is a construction of data objects and operators with its own data type and
value.

G An expression is arithmetic if its result has the data type INT or REAL.

G An expression is logical if its result has the data type BOOL.

G An expression is geometric if its result has the data types FRAME, POS, E6POS, AXIS
or E6AXIS.

2.1.10 Statement

Statements are commands which do not, in themselves, represent a fixed value and data
type. Simple statements consist of a single command line, while compound statements con--
tain an entire control structure.

2.1.11 Comment

A comment is text that is ignored by the compiler. It is separated from the program code in
a program line by means of the “;” character.

2 Reference section (continued)

15 of 135

RefGuideR4.1 09.01.00 en

2.1.12 Motion programming

Onespecial feature of a robot programming language is the possibility of programmingpoints
between which the robot TCP (Tool Center Point) moves. There are two basic traversing
modes:

2.1.12.1 PTP motions (PTP = Point--To--Point)

The robot moves to the destination point with the maximum axis--specific acceleration and
velocity of the leading axis. It does not keep to a specific path.

2.1.12.2 CP motions (CP = Continuous Path)

The robot TCPmoves along a linear (LIN) or circular (CIRC) path between the start point and
the destination point. The type of motion is dependent on the programmed path velocity and
acceleration, the orientation control, and, if exact positioning is not required, the nature of the
approximate positioning, as well as on the start point and destination point.

2.1.13 Control structures

Control structures are available for influencing program execution. These can be used to
make the order in which program lines are executed dependent on conditions. One example
of this is the IF ELSE statement.

2.1.14 Subprograms

Subprograms are program code which is reached by means of branches from the main
program. Once the subprogram has been executed, program execution is resumed in the
command line directly below the subprogram call.

In addition to the main program, further subprograms can also be defined in SRC files. The
main program is recognized globally if its name is the same as that of the SRC file in which
its program code is contained. If further subprograms of an SRC file are to be recognized
globally, the keyword GLOBAL must be used.

2.1.15 Functions

Functions, like subprograms, are program units that can be called; however, they also
possess a data type.

2.1.16 Block structure

The KRL programming language is structured in blocks. A block consists of statements,
declarations, parameters and/or comments. These statements and declarations are
executed block by block by the system.

KRL blocksmust be created in accordance with certain rules. The prescribed structure of the
blocks can be noted from the syntax descriptions of the declarations and statements in the
instruction index.

A block contains either:

G a declaration

G a statement

G a comment

Empty blocks can also be used. They consist only of an end of block character.

A block begins at the start of a line without any special identifier. Blocks may also start with
one or more blanks. Each block is ended by pressing the RETURN key. If blocks are too long

Reference Guide

16 of 135

RefGuideR4.1 09.01.00 en

to fit on the display, the system will automatically move onto the next line. The maximum line
length is 474 characters.

2.1.17 Areas of validity

If variables, constants, subprograms, functions or interrupts are to be globally valid, i.e.
recognized in all KRL programs that are loaded, the keyword GLOBAL must be used. The
data objects are otherwise only recognized locally, with one exception: variables declared in
the $CONFIG.DAT file are also recognized globally.

Areas of validity of local data objects:

G A local variable is valid in the program code containing the declaration of the variable
and situated between the keywords DEF and ENDDEF.

G A local constant is recognized in themodule to which the data list, in which the constant
was declared, belongs.

G Local subprograms and local functions are recognized in the main program of the
shared SRC file.

G A local interrupt is only recognized at, or below, the programming level in which it was
declared.

If there are local and global variables with the same name, the compiler uses the local
variable within its area of validity.

Global variables and constants can only be declared in data lists.

In order to be able to use the keyword GLOBAL, the global option in the file “Progress.ini”,
in the INIT directory, must be set to TRUE:
GLOBAL_KEY=TRUE

2.1.18 Keywords

Keywords are sequences of letters having a fixed function. They appear in bold upper--case
letters in the description of the syntax.

There are reserved and non--reserved keywords:

G Reserved keywordsmay not be used in any other way than with the meaning defined
for them. Most importantly, they must never be used as names for data objects. Some
of the keywords listed in the table below are actually recognized by the compiler but are
not yet used in the system. They are thus not implemented, but reserved nevertheless.

G In the case of non--reserved keywords, the meaning is restricted to a particular
context. This context can be identified from the description of the syntax, in which the
keyword again appears in bold upper--case letters. Outside of this context, a
non--reserved keyword is interpreted as a name. To avoid any confusion, however, the
non--reserved keywords should not be used as names.

2 Reference section (continued)

17 of 135

RefGuideR4.1 09.01.00 en

The following table gives a list of all of the keywords used in the declarations, statements and
definitions of the KRL robot programming language:

Keyword Function Brief information
ANIN Statement Cyclic reading of the analog inputs.

ANOUT Statement Operator control of the analog output.

BRAKE Statement Braking of the robot motion in interrupt
routines.

CASE Statement Initiates a branch in the SWITCH
statement

CCLOSE Statement Closing of channels.

CHANNEL Declaration Declaration of signal names for input and
output channels.

CIRC Statement Circular motion.

CIRC_REL Statement Circular motion with relative target
coordinates.

CONFIRM Statement Acknowledging of acknowledgement
messages.

CONTINUE Statement Prevention of advance run stops.

COPEN Statement Opening an input/output channel.

CREAD Statement Reading of data from channels.

CWRITE Statement Writing of data to channels.

DECL Declaration Declaration of variables and arrays.

DEF Definition Declaration of programs and subprograms.

DEFAULT Statement Initiates the default branch in the SWITCH
statement.

DEFDAT Definition Declaration of data lists.

DEFFCT Definition Declaration of functions.

DELAY Parameter Initiates the specification of the delay in the
TRIGGER and ANOUT statements.

DIGIN Statement Cyclic reading in of digital inputs.

DISTANCE Parameter Initiates the specification of the switching
point in the TRIGGER statement

DO Statement Initiates both the call of the interrupt
routine in the INTERRUPT declaration and
the call of a subprogram or an assignment
of a value in the TRIGGER statement.

ELSE Statement Initiates the second statement branch in
the IF statement.

END Statement End of a subprogram (see DEF).

ENDDAT Statement End of a data list (see DEFDAT).

ENDFCT Statement End of a function (see DEFFCT).

ENDFOR Statement Ends the FOR loop statement.

Reference Guide

18 of 135

RefGuideR4.1 09.01.00 en

ENDIF Statement Ends the IF branching.

ENDLOOP Statement Ends the LOOP.

ENDSWITCH Statement Ends the SWITCH branches.

ENDWHILE Statement Ends the WHILE loop statement.

ENUM Declaration Declaration of enumeration types.

EXIT Statement Unconditional exit from loops.

EXT Declaration Declaration of external subprograms.

EXTFCT Declaration Declaration of external functions.

FOR Statement Counting loop or initiation of the WAIT
statement condition.

GLOBAL Declaration Declaration of a global area of validity.

GOTO Statement Unconditional jump statement.

HALT Statement Neatly interrupt program execution and
halt processing.

IF Statement Execution of statements depending on the
result of a logical expression.

IMPORT Declaration Imports variables from data lists.

INTERRUPT Statement Definition of an interrupt function and its
activation and deactivation.

IS Statement Initiates the source specifications in the
IMPORT declaration.

LIN Statement Linear motion.

LIN_REL Statement Linear motion with relative coordinates.

LOOP Statement Endless loop.

MAXIMUM Parameter Keyword for the maximum value of analog
outputs.

MINIMUM Parameter Keyword for the minimum value of analog
outputs.

PRIO Parameter Initiates the specification of the priority
when calling a subprogram in the
TRIGGER statement.

PTP Statement Point--to--point motion.

PTP_REL Statement Point--to--point motion with relative
coordinates.

PULSE Statement Activation of a pulse output.

REPEAT Statement Program loop that is always executed at
least once (non--rejecting loop). The
termination condition is checked at the end
of the loop.

RESUME Statement Aborting of subprograms and interrupt
routines.

2 Reference section (continued)

19 of 135

RefGuideR4.1 09.01.00 en

RETURN Statement Return from functions and subprograms.

SEC Statement Initiates the specification of the wait time in
the WAIT statement.

SIGNAL Declaration Declaration of signal names for input and
output.

SREAD Statement Breaks a data set down into its constituent
parts.

STRUC Declaration Declaration of structure types.

SWITCH Statement Choice between several statement
branches.

SWRITE Statement Combination of data to form a data set.

THEN Statement Initiates the first statement branch in the IF
statement.

TO Statement Separates initial and final values in the
FOR statement and initiates the
specification of the digital inputs/outputs in
the SIGNAL declaration.

TRIGGER Statement Path--related triggering of a switching
action synchronous to the robot motion.

UNTIL Statement Initiates the “end” inquiry in the REPEAT
loop

WAIT Statement Wait for a continue condition or for a
specified period of time.

WHEN Statement Initiates the logic expression in the
INTERRUPT declaration and the
specification of the path--related distance
criterion in the TRIGGER statement.

WHILE Statement Program loop; termination condition is
checked at the beginning of the loop
(rejecting loop).

Reference Guide

20 of 135

RefGuideR4.1 09.01.00 en

2.2 Command index

ANIN

2.2.1 ANIN

2.2.1.1 Brief information

Cyclic reading of the analog inputs.

2.2.1.2 Syntax

Reading of an analog input:

ANIN ON Signal_Value = Factor * Signal_Name �� Offset

Termination of the read operation:

ANIN OFF Signal_Name

Argument Type Explanation
Signal_Value REAL The result of the cyclical reading is stored in

Signal_Value.
Signal_Value can be a variable, an analog signal or a
signal declaration.

Factor REAL Factor can be a constant, variable or signal declaration.

Signal_Name REAL Signal_Name designates a signal declaration with an
analog input.

Offset REAL Offset can be a constant, variable, signal declaration or
analog signal.

All of the variables used in the ANIN statement must be declared in data lists.

A maximum of 3 ANIN ON statements may be active at any given time.

2.2.1.3 Description

The analog module makes analog interfaces available which can be read by means of the
pre--defined signal variables $ANIN[1] to $ANIN[8]. The analog inputs can be read over a
period of time using ANIN or can be assigned to a variable of data type REAL once bymeans
of the operator “=”. In the case of cyclic reading with the ANIN statement, the analog
interfaces are read in the low--priority cycle (12 ms). ThreeANIN ONstatements can be used
at the same time. Two ANIN ON statements can write to the same signal value or access the
same analog interface. It is possible to combine analog inputs logically with other operators
and to assign them to a signal value by using the optional arithmetic of the ANIN statement.

The analog module makes available 8 analog interfaces with a resolution of 12 bits
(4.88 mV, not electrically isolated). The input voltage can vary from --10 V to +10 V butmay
not exceed 35 V. The hardware inputs can be assigned to interface numbers by means of
system parameters. Accessing an analog input triggers an advance run stop.

2 Reference section (continued)

21 of 135

RefGuideR4.1 09.01.00 en

If the input voltage exceeds 35 V, the analog module or parts of it can be destroyed.

2.2.1.4 Example

The path correction (system variable $TECHIN[1]) is to be corrected in accordance with
the sensor input $ANIN[2]. The sensor input $ANIN[2] is logically combined with the
symbolic variable SIGNAL_1. The result of multiplying the variable FACTOR and the
current value of SIGNAL_1 is added to the variable OFFSET and written cyclically to the
system variable for the path correction $TECHIN[1].

SIGNAL SIGNAL_1 $ANIN[2]
ANIN ON $TECHIN[1] = FACTOR * SIGNAL_1 + OFFSET

The cyclic scanning of SIGNAL_1 is ended using the ANIN OFF instruction.
ANIN OFF SIGNAL_1

SIGNAL, ANOUT, DIGIN

Reference Guide

22 of 135

RefGuideR4.1 09.01.00 en

ANOUT

2.2.2 ANOUT

2.2.2.1 Brief information

Control of the analog output.

2.2.2.2 Syntax

Starting the analog output:

ANOUT ON Signal_Name = Factor * Control_Element �� Offset
�DELAY = �Time
�MINIMUM = Minimum_Value �MAXIMUM = Maximum_Value

Ending the analog output:

ANOUT OFF Signal_Name

Argument Type Explanation

Signal_Name REAL The Signal_Name represents a signal declaration defined
using the statement SIGNAL and referring to an analog
output. The analog output, e.g. $ANOUT[1], must not be
entered directly.

Factor REAL Factor can be a variable, signal declaration, analog signal
or constant.

Control_
Element

REAL Control_Element can be a variable, signal declaration or
analog signal.

Offset REAL Offset can be a variable, signal declaration, analog signal
or constant.

Time REAL The Time is specified in seconds as a real number.

Minimum_Value,
Maximum_Value

REAL Minimum_Value and Maximum_Value must be between
--1.0 and +1.0 and limit the output. The actual value does
not fall below/exceed the specified minimum/maximum
values, even if the calculated values fall outside this
range. The minimum value must, of course, always be
less than the maximum value and the keyword sequence
MINIMUM MAXIMUM must be maintained.

All of the variables used in the ANOUT statement must be declared in data lists.

2.2.2.3 Description

Unlike the binary or digital output, the analog output is not controlled simply by means of a
simple value assignment but bymeans of the ANOUT statement. The signal name is defined
using the SIGNAL command.

2 Reference section (continued)

23 of 135

RefGuideR4.1 09.01.00 en

The expression that can be specified for calculating the value of the analog output is
calculated cyclically. It must not, however, be too extensive, so that it can be calculatedwithin
the cycle time. The result of the expression must be in the range --1 to +1 or 0 to +1,
corresponding to the configuration of the hardware. If the result of the expression exceeds
these limits, the output takes the relevant final value and thehintmessage “Limit signal name”
is displayed until the result falls below these limits again. The keywords MINIMUM and
MAXIMUM can be used, however, to define lower output limit values.

The optional keywordDELAY can be used to program positive or negative delays. The value
of the delay is specified in seconds as a real number.

The robot controller provides 16 analog outputs ($ANOUT[1] ... $ANOUT[16]) as standard.
The analog outputs can be read and set.

2.2.2.4 Example

The analog output $ANOUT[5] is assigned to the symbolic name ANALOG_1. When the
analog value output is activated, the product of the variable FACTOR and the system
variable $TECHVAL[1], increased by the value of the variable OFFSET_1, is cyclically
calculated and written to the analog output $ANOUT[5]. The analog output is ended using
ANOUT OFF ANALOG_1.
Please note: in order for $TECHVAL[i] to provide an unfiltered signal corresponding to the
technology--specific function, $TECH_ANA_FLT_OFF[i] must be set to TRUE.

SIGNAL ANALOG_1 $ANOUT[5]
ANOUT ON ANALOG_1 = FACTOR * $TECHVAL[1] + OFFSET_1
...
ANOUT OFF ANALOG_1

The analog output $ANOUT[1] is assigned to the symbolic nameADHESIVE for controlling
the dispensing of adhesive in proportion to the velocity. The control value is calculated from
half of the path velocity (system variable $VEL_ACT; in order to obtain an uncorrupted
signal proportional to the path velocity, $VEL_FLT_OFF must have the value TRUE) and
a constant addition of 0.2. Output of the cyclically calculated output signal is delayed for
0.05 seconds using the optional parameter DELAY. The analog output is ended by using
ANOUT OFF ADHESIVE.

SIGNAL ADHESIVE $ANOUT[1]
ANOUT ON ADHESIVE = 0.5*$VEL_ACT + 0.2 DELAY = 0.05
...
ANOUT OFF ADHESIVE

ANIN, SIGNAL

Reference Guide

24 of 135

RefGuideR4.1 09.01.00 en

BRAKE

2.2.3 BRAKE

2.2.3.1 Brief information

Braking of the robot motion in interrupt routines.

2.2.3.2 Syntax

BRAKE �F

Argument Type Explanation
F Specifying the parameter F (brake fast) causes the robot

to be braked with increased deceleration, just like in an
Emergency Stop. If the path--maintaining stop is
configured for the selected operating mode using the
machine data $EMSTOP_PATH, the robot is braked on
the path in a time--optimal manner. Otherwise, the axes
are only braked in a synchronized manner, leaving the
path.

2.2.3.3 Description

The BRAKE statement is used in an interrupt routine to brake the robot motion that it still
active. BRAKE brakes the motion with the same deceleration as with an operator stop.
Braking using the BRAKE statement occurs on the programmed path if the argument F is not
specified.

The interrupt routine is not continued until the robot has come to a stop.

The BRAKE statement must not be used outside interrupt routines. Failure to
observe this will cause execution of the program to be aborted.

2.2.3.4 Example

A non--path--maintaining Emergency Stop is executed via the hardware during application
of adhesive. You would now like to use the program to stop application of the adhesive and
reposition the adhesive gun onto the path after enabling (by input 10).

DEF STOPSP()
; Interrupt routine
BRAKE F
ADHESIVE = FALSE
WAIT FOR $IN[10]
LIN $POS_RET
; Move gun to position at which the path was left
ADHESIVE = TRUE
END

INTERRUPT DECL, INTERRUPT

2 Reference section (continued)

25 of 135

RefGuideR4.1 09.01.00 en

CCLOSE

2.2.4 CCLOSE

2.2.4.1 Brief information

Input/output channels that have previously been declared with the “CHANNEL” statement
can be closed using the “CCLOSE” statement. “CCLOSE” deletes all of the data that are
waiting to be read. When deselecting and resetting a program, all of the channels that are
open there are closed.

2.2.4.2 Syntax

CCLOSE (Handle, State)

Argument Type Explanation

Handle INT The “handle” variable transferred by “COPEN”.

State STATE_T “CMD_STAT” is an enumeration type which is the first
component of the State variable of the structure type
“STATE_T”. Values of the component “CMD_STAT” that
are relevant for “CCLOSE” are:
CMD_OK Command successfully executed
CMD_ABORT Command not successfully executed

2.2.4.3 Description

Input/output channels that have previously been declared with the “CHANNEL” statement
can be closed using the “CCLOSE” statement.

Possible causes of “CMD_ABORT” are:

The channel

-- is already closed;

-- HANDLE not valid;

-- has been opened by another process.

The “HANDLE” can no longer be used for channel statements once this function has been
called successfully. The value of the variable is not changed, however.
“CCLOSE” deletes all of the data that are waiting to be read. When deselecting and
resetting a program, all of the channels that are open there are implicitly closed.

The complete definition of the status and mode information for channel statements can
be found in the chapter “CHANNEL”.

2.2.4.4 Example

Closing of a channel with the handle “HANDLE”. The status variable “SC_T” returns informa--
tion about the status.

CCLOSE(HANDLE,SC_T)

Reference Guide

26 of 135

RefGuideR4.1 09.01.00 en

A complete example of a program can be found in the chapter “CHANNEL”.

2 Reference section (continued)

27 of 135

RefGuideR4.1 09.01.00 en

CHANNEL

2.2.5 CHANNEL

2.2.5.1 Brief information

The “CHANNEL” statement is used for declaring signal names for input and output channels.

2.2.5.2 Syntax

CHANNEL :Channel_Name: Interface_Name Structure_Variable

Argument Type Explanation

Channel_Name Any symbolic name

Interface_Name Predefined signal variable
SER_1 serial interface 1
SER_2 serial interface 2

Structure_Variable System--dependent structure variable
specifying the protocol. Evaluation is not
carried out.

2.2.5.3 Description

The robot controller contains two classes of interface:

G simple process interfaces -- signals -- and

G logic interfaces -- channels.

All of the interfaces are addressed using symbolic names. The specific interface names
(symbolic names) are logically combined with the predefined signal variables for channels
by means of the CHANNEL declaration.

The predefined signal variables for channels are

G SER_1 and

G SER_2

for the serial interfaces, and

G $CMD (e.g. “RUN....”)

for the command interpreter.

The procedure for accessing channels is the same. In order to be able to access a channel,
it must be declared in the “CHANNEL” declaration.

The variables are predefined in the file “$CUSTOM.DAT” (directory “....\PROGRAM
FILES\KRC\MADA\STEU”) “:SER_1” and “:SER_2”.

The channel can then be opened with the “COPEN” statement. The “CREAD” statement can
be used to read the channel, while the “CWRITE” statement is used to write to the channel.
The channel is closed with the “CCLOSE” statement.

The state and mode information for channel statements are the same.

The state information is returned in a variable of the predefined structure type “STATE_T”.
“STATE_T” has the following definition:

Reference Guide

28 of 135

RefGuideR4.1 09.01.00 en

STRUC STATE_T CMD_STAT RET1, INT HITS, INT LENGTH

“CMD_STAT” is a predefined enumeration type of the following form:

ENUM CMD_STAT CMD_OK, CMD_TIMEOUT, DATA_OK, DATA_BLK, DATA_END,
CMD_ABORT, CMD_REJ, CMD_PART, CMD_SYN, FMT_ERR

The modes that can be used with the statements “CREAD” and “CWRITE” are made
available as a predefined enumeration type:

ENUM MODUS_T SYNC, ASYNC, ABS, COND, SEQ

The meaning of the state and mode are explained in the sections on the individual
commands. Only the parameters listed there are used.

2.2.5.4 Example

Assignment of a channel name to a physical channel

With the “CHANNEL” statement:
Channel name :SER_2

is assigned to
physical channel :SER_2

predefined in the file “$CUSTOM.DAT”
(directory\PROGRAM FILES\KRC\MADA\STEU)

CHANNEL :SER_2 :SER_2 $PSER_2

SIGNAL, COPEN, CCLOSE, CREAD, CWRITE

2 Reference section (continued)

29 of 135

RefGuideR4.1 09.01.00 en

CIRC

2.2.6 CIRC

2.2.6.1 Brief information

Programming a circular motion.

2.2.6.2 Syntax

CIRC Auxiliary_Point, Target_Position �,CA Circular_Angle
�Path_Approximation

Argument Type Explanation
Auxiliary_
Point

POS,
E6POS,
FRAME

Geometric expression producing an auxiliary point
on the circular path. Only Cartesian coordinates can
be used here.

The reference system for the Cartesian auxiliary
position is defined by the system variable $BASE.

The orientation angles and the angle status
specifications S and T for an auxiliary point are
always disregarded.

If structure components are missing in the auxiliary
point, these values are taken unchanged from the
current position.

Target_
Position

POS,
E6POS,
FRAME

Geometric expression specifying the target position
of the circular motion. Only Cartesian coordinates
can be used here.

The reference system for the Cartesian target
position is defined by the system variable $BASE.

The angle status specifications S and T for a target
position of type POS or E6POS are always
disregarded. If structure components are missing in
the target position, these values are taken
unchanged from the current position.

! The auxiliary point and the target point can also be
taught. If this is to be done later, a “!” is programmed
in the place of the auxiliary point and target position.

Reference Guide

30 of 135

RefGuideR4.1 09.01.00 en

Circular_
Angle

REAL Arithmetic expression allowing the arc to be
lengthened or shortened in conjunction with the
keyword CA (circular angle). The unit of
measurement is degrees. There is no limit for the
circular angle. In particular, a circular angle greater
than 360 can be programmed.

If the circular angle is positive, the robot moves
along the circular path in the direction defined by the
start position, the auxiliary point and the target
position. If it is negative, the robot moves along the
circular path in the opposite direction.

When specifying a circular angle, the programmed
target position is not generally the real target
position. This is defined by the angle specification.

Approximate_
Positioning

Keyword This option allows you to use approximate
positioning. The possible entries are:

 C_DIS (default value)
 C_ORI
 C_VEL

Programming the path velocity and acceleration of the TCP:

Variable Data type Unit Function
Velocities $VEL.CP REAL m/s Travel speed (path

velocity)
$VEL.ORI1 REAL /s Swivel velocity
$VEL.ORI2 REAL /s Rotational velocity

Accelerations $ACC.CP REAL m/sΟ Path acceleration
$ACC.ORI1 REAL /sΟ Swivel acceleration
$ACC.ORI2 REAL /sΟ Rotational acceleration

Orientation control of the tool with CIRC motions:

Variable Effect
$ORI_TYPE = #CONSTANT During the path motion the orientation remains

constant; the programmed orientation is ignored for
the destination point and that for the start point used.

$ORI_TYPE = #VAR During the path motion the orientation changes
continuously from the initial orientation to the
destination orientation.

$CIRC_TYPE = #BASE Orientation control relative to the base system
($BASE).

$CIRC_TYPE = #PATH Orientation control relative to the tool--basedmoving
frame on the circular path.

2 Reference section (continued)

31 of 135

RefGuideR4.1 09.01.00 en

System variables for defining the start of approximate positioning:

Variable Data type Unit Meaning Keyword in
the command

$APO.CDIS REAL mm Translational distance
criterion

C_DIS

$APO.CORI REAL  Orientation distance C_ORI
$APO.CVEL INT % Velocity criterion C_VEL

2.2.6.3 Description

In the case of CIRC motions, the controller calculates a circular motion from the current
position via an auxiliary point to an end point, which is thus unambiguously determined by
the target position or the circular angle. The robot is moved to the end point via intermediate
points, which are calculated and executed at intervals of one interpolation cycle.

Just as for LIN motions, both the velocities and accelerations and the system variables
$TOOL and $BASE must also be programmed for circular motions. However, the velocities
and accelerations no longer refer to themotor speed of each axis but to the TCP. The system
variables

G $VEL for the path velocity and

G $ACC for the path acceleration

are available for defining them.

Orientation control

G Space--related or path--related orientation
You can basically choose between space--related and path--related orientation control.
In the case of space--related orientation control, the orientation is interpolated relative
to the current base system ($BASE); with path--related orientation, on the other hand,
it is interpolated relative to the tool coordinate system (tool--based moving frame). The
type of orientation control is defined with the aid of the system variable $CIRC_TYPE:

-- $CIRC_TYPE=#BASE for space--related orientation control and

-- $CIRC_TYPE=#PATH for path--related orientation control.

G Variable and constant orientation
You can also choose between variable and constant orientation. If you select variable
orientation, this means that the change in orientation which occurs between the start
position and the programmed target position is taken into account. It is executed either
in relation to space or in relation to the path. In the case of constant space--related
orientation, the orientation at each control point is absolutely identical to the orientation
at the start point. With constant path--related orientation, the relative orientation is
constant in relation to the tool--basedmoving frame. If an orientation has been specified
for the target position, this is disregardedwith constant orientation. The system variable
$ORI_TYPE is used for defining the orientation:

-- $ORI_TYPE=#VAR for variable orientation and

-- $ORI_TYPE=#CONSTANT for constant orientation control.

Angle status

In the case of CIRC motions, the angle status of the end point is always the same as that of
the start point. For this reason, the specifications Status S and Turn T for a target position
of data type POS or E6POS are always disregarded.

Reference Guide

32 of 135

RefGuideR4.1 09.01.00 en

In order to alwaysensure an identicalmotion sequence, the constellationof the axes
must first be unambiguously defined. The firstmotion instruction of a programmust
therefore always be a PTP instruction specifying S and T.

Approximate positioning

It is unnecessary and time--consuming to position the robot exactly to auxiliary points. You
can therefore start a transition to the following motion block (PTP, LIN or CIRC) at a defined
distance from the target position (so--called approximate positioning).
Approximate positioning is programmed in two steps:

G Definition of the approximate positioning range with the aid of the system variable
$APO:

-- $APO.CDIS:
translational distance criterion (activated by C_DIS):
the approximate positioning contour is started at a specified distance (unit [mm])
from the target point.

-- $APO.CORI:
orientation distance (activated by C_ORI): the TCP leaves the individual block
contour when the dominant orientation angle (swiveling or rotation of the
longitudinal axis of the tool) falls below the specified angle distance to the target
point.

-- $APO.CVEL
velocity criterion (activated by C_VEL): when the $APO.CVEL percentage of the
velocity defined in $VEL.CP is achieved, the approximate positioning contour is
initiated. A maximum of half the programmed distance may be approximated.

G Programming of the motion instruction with a target position and an approximate
positioning mode:

-- CIRC--CIRC or CIRC--LIN approximate positioning
In the case of CIRC--CIRC and CIRC--LIN approximate positioning, a symmetrical
approximate positioning contour cannot be calculated. The approximate
positioning path consists of two parabolic segments, which also have a tangential
transition between each other and also to the individual blocks. To define where
approximate positioning is to begin and end, one of the keywords C_DIS, C_ORI
or C_VEL has to be programmed.

-- CIRC--PTP approximate positioning
A precondition for approximate positioning is that none of the robot axes rotates
more than 180 in the CIRC block and that the position S does not change. The
start of approximate positioning is defined by one of the variables $APO.CDIS,
$APO.CORI and $APO.CVELand the endby the variable $APO.CPTP.One of the
keywords C_DIS, C_ORI and C_VEL has to be programmed in the CIRC
instruction.

2 Reference section (continued)

33 of 135

RefGuideR4.1 09.01.00 en

For approximate positioning, the computer advance runmust be enabled. If it is not,
the message “Approximation not possible” will be displayed. In the case of
CIRC--PTP approximate positioning, the advance run is limited to 1, however!

G Programstatements that stop the advance runmaynot appear betweenapproximate
positioning blocks (remedy with CONTINUE).

G The greater the velocity and acceleration are, the greater the dynamic deviations
from the path will be (following error).

G Changing the acceleration has a considerably lesser effect on the path contour than
changing the velocity.

G Interpolation is always carried out on a space--related basis in the approximate
positioning range.

G The initial orientation for approximate positioning is always the orientation that would
be achieved at the approximate positioning point relative to the base.

G If twoCIRCblocks are executedwith path--related orientation, the reorientation in the
approximate positioning range is nevertheless space--related.

2.2.6.4 Example

Circular motion with taught auxiliary and target coordinates.
CIRC !

Circular motion with taught auxiliary and target coordinates; the target point of the
motion is determined by the circular angle of --35.
CIRC ! ,CA -35

Circular motion with programmed auxiliary and target coordinates.
CIRC {X 5,Y 0, Z 9.2},{X 12.3,Y 0,Z -5.3,A 9.2,B -5,C 20}

Circular motion with programmed auxiliary and target coordinates; approximate
positioning is activated.
CIRC {Z 500,X 123.6},POINT1,CA +260 C_ORI

Constant path--related orientation control.
$ORI_TYPE=#CONSTANT
$CIRC_TYPE=#PATH
CIRC AUX_POINT,{X 34, Y 11, Z 0}

CIRC--PTP approximate positioning from point 2 to point 3. Approximate positioning is
started 30 mm before point 2.
$APO.CDIS=30
$APO.CPTP=20
PTP POINT1
CIRC AUX_POINT,POINT2,CA ANGLE C_DIS
PTP POINT3

CIRC_REL, PTP, LIN, CONTINUE

Reference Guide

34 of 135

RefGuideR4.1 09.01.00 en

CIRC_REL

2.2.7 CIRC_REL

2.2.7.1 Brief information

Circular motion with relative coordinates.

2.2.7.2 Syntax

CIRC_REL Auxiliary_Point,Target_Position
�,CA Circular_Angle
�Approximate_Positioning

Argument Type Explanation
Target_
Position

POS,
E6POS,
FRAME

Geometric expression specifying the target position
of the circular motion. Only Cartesian coordinates
can be used here. These are to be interpreted
relative to the current position before the CIRC
motion.

Translational distances are executed in the direction
of the axes of the base coordinate system $BASE.

If the target position contains undefined structure
components, these values are set to 0, i.e. the
absolute values remain unchanged.

The predefined variable $ROTSYS defines the effect
of the programmed orientation components.

The angle status specifications S and T for a target
position of type POS or E6POS are always
disregarded.

2 Reference section (continued)

35 of 135

RefGuideR4.1 09.01.00 en

Auxiliary_
Point

POS,
E6POS,
FRAME

Geometric expression producing an auxiliary point
on the circular path. The auxiliary point is to be
specified in relative and Cartesian coordinates!

Translational distances are executed in the direction
of the axes of the base coordinate system $BASE.

If the auxiliary point contains undefined structure
components, these values are set to 0, i.e. the
absolute values remain unchanged.

The predefined variable $ROTSYS defines the effect
of the programmed orientation components.

The orientation angles and the angle status
specifications S and T for an auxiliary point are
always disregarded.

Circular_
Angle

REAL Arithmetic expression allowing the arc to be
lengthened or shortened in conjunction with the
keyword CA (circular angle). The unit of
measurement is degrees.

There is no limit for the circular angle. In particular, a
circular angle greater than 360 can be
programmed.

If the circular angle is positive, the robot moves
along the circular path in the direction defined by the
start position, the auxiliary point and the target
position. If it is negative, the robot moves along the
circular path in the opposite direction.

When specifying a circular angle, the programmed
target position is not generally the real target
position. This is defined by the angle specification.

Approximate_
Positioning

Keyword This option allows you to use approximate
positioning. The possible entries are:

 C_DIS (default value)
 C_ORI
 C_VEL

Reference Guide

36 of 135

RefGuideR4.1 09.01.00 en

Programming the path velocity and acceleration of the TCP:

Variable Data type Unit Function
Velocities $VEL.CP REAL m/s Travel speed (path

velocity)
$VEL.ORI1 REAL /s Swivel velocity
$VEL.ORI2 REAL /s Rotational velocity

Accelerations $ACC.CP REAL m/sΟ Path acceleration
$ACC.ORI1 REAL /sΟ Swivel acceleration
$ACC.ORI2 REAL /sΟ Rotational acceleration

Orientation control of the tool with CIRC motions:

Variable Effect
$ORI_TYPE = #CONSTANT During the path motion the orientation remains

constant; the programmed orientation is ignored for
the destination point and that for the start point used.

$ORI_TYPE = #VAR During the path motion the orientation changes
continuously from the initial orientation to the
destination orientation.

$CIRC_TYPE = #BASE Orientation control relative to the base system
($BASE).

$CIRC_TYPE = #PATH Orientation control relative to the tool--basedmoving
frame on the circular path.

System variables for defining the start of approximate positioning:

Variable Data type Unit Meaning Keyword in
the command

$APO.CDIS REAL mm Translational distance
criterion

C_DIS

$APO.CORI REAL  Orientation distance C_ORI
$APO.CVEL INT % Velocity criterion C_VEL

2.2.7.3 Description

The relative CIRC instruction basically works in exactly the same way as the absolute CIRC
instruction. The target coordinates are merely defined relative to the current position instead
of with the aid of absolute space or axis coordinates.
Apart from this, all the information contained in the description of the absolute CIRC
instruction applies here.

2 Reference section (continued)

37 of 135

RefGuideR4.1 09.01.00 en

2.2.7.4 Example

Circular motion with programmed auxiliary and target coordinates; the target point of the
motion is defined by a circle angle of 500; approximate positioning is activated.
CIRC_REL {X 100,Y, 3.2,Z -20},{Y 50},CA 500 C_VEL

LIN--CIRC approximate positioning from point 1 to point 2 and CIRC--CIRC approximate
positioning from point 2 to point 3. Approximate positioning to point 1 is started when the
velocity has been reduced to 0.6 m/s (50% of 1.2 m/s). Approximate positioning to point
2 begins 20 mm before point 2.
$VEL.CP=1.2
$APO.CVEL=50
$APO.CDIS=20
LIN POINT1 C_VEL
CIRC_REL AUX_POINT,POINT2_REL C_DIS
CIRC AUX_POINT,POINT3

CIRC, PTP_REL, LIN_REL, CONTINUE

Reference Guide

38 of 135

RefGuideR4.1 09.01.00 en

CONFIRM

2.2.8 CONFIRM

2.2.8.1 Brief information

Acknowledging of acknowledgement messages.

2.2.8.2 Syntax

CONFIRM Management_Number

Argument Type Explanation
Management_
Number

INT Arithmetic expression specifying the management
number of the message that is to be acknowledged.

Specifying the management number 0 means that all
of the messages that can be acknowledged are
acknowledged.

2.2.8.3 Description

Acknowledgement messages can be acknowledged under program control using the
statement CONFIRM. After a message has been successfully acknowledged, it is no longer
present.

2 Reference section (continued)

39 of 135

RefGuideR4.1 09.01.00 en

2.2.8.4 Example

Acknowledgement of the acknowledgement message with the number 27.
CONFIRM 27

Acknowledgement of the acknowledgement message with the number M_NUMBER.
CONFIRM M_NUMBER

Acknowledgement of the acknowledgement message with the number M_NUMBER+5.
CONFIRM M_NUMBER+5

Acknowledgement of all existing acknowledgement messages.
CONFIRM 0

After a stop signal (e.g. Emergency Stop) has been canceled, an acknowledgement
message is always displayed. This must be acknowledged first before you can work any
further. The following subprogram detects and acknowledges this message
automatically, provided that the correct operating mode (not manual operation) is
selected and that the stop state has really been canceled. As a robot program cannot
be started if an acknowledgement message is active, the subprogram must be located
in a Submit file.
DEF AUTO_QUIT()
INT M
DECL STOPMESS MESSAGE ; Predefined structure type for stop messages
IF $STOPMESS AND $EXT THEN ; Check stop message and operating mode

M=MBX_REC($STOPMB_ID,MLD); Read current state into MESSAGE
IF M==0 THEN ; Check that message may be acknowledged

IF ((MESSAGE.GRO==2) AND (MESSAGE.STATE==1)) THEN
CONFIRM MLD.CONFNO; Acknowledgement of this message

ENDIF
ENDIF

ENDIF
END

Reference Guide

40 of 135

RefGuideR4.1 09.01.00 en

CONTINUE

2.2.9 CONTINUE

2.2.9.1 Brief information

Prevention of advance run stops.

2.2.9.2 Syntax

CONTINUE

2.2.9.3 Description

You canuse the systemvariable $ADVANCE to define howmanymotion blocks the controller
executes in advance. In the case of instructions concerning the periphery (e.g. input/output
instructions), the computer advance run is always stopped, however. If you do not want this
to happen, the CONTINUE statement must be programmed before the relevant instruction.

TheCONTINUE statement always only applies to the following instruction line, even
if this is a blank line!

2.2.9.4 Example

Prevention of an advance run stop with $OUT:
CONTINUE
$OUT[1]=TRUE
CONTINUE
$OUT[2]=FALSE

ANOUT, HALT, WAIT, PULSE

2 Reference section (continued)

41 of 135

RefGuideR4.1 09.01.00 en

COPEN

2.2.10 COPEN

2.2.10.1 Brief information

Input/output channels that have previously been declared with the “CHANNEL” statement
can be opened using the “COPEN” statement.

2.2.10.2 Syntax

COPEN (Channel_Name, Handle)

Argument Type Explanation

Channel_Name Channel name declared in the “CHANNEL”
statement.

Handle INT User--defined variable

2.2.10.3 Description

Input/output channels that have previously been declared with the CHANNEL statement can
be opened using the “COPEN” statement – which may be included in programs at control or
robot levels.

The “Handle” variable identifies the relevant channel for all of the following accesses. If the
system refuses to open a channel, a 0 is returned.

The predefined variable “$CMD” is available for command execution, which is generally
open.

2.2.10.4 Example

Opening of a channel with the declared channel name “:SER_2” and the handle
“HANDLE”.

COPEN(:SER_2,HANDLE)

A complete example of a program can be found in the chapter “CHANNEL”.

Reference Guide

42 of 135

RefGuideR4.1 09.01.00 en

CREAD

2.2.11 CREAD

2.2.11.1 Brief information

Reading of data from channels.

Application example: Data exchange (read statement) between KR C1 and a
partner device (PC, intelligent sensor ...).

The “CREAD” statement is used for reading data from open channels. Two cases are
distinguished here:

G Active reading
The program requests an input via a channel. The channel drivers set an input request
and return the data that are received to the CREAD statement as a result.

G Passive reading
A predefined variable (INT $DATA_SER1 or INT $DATA_SER2), which is incremented
by the channel driver after the arrival of unrequested data, is made available for each
of the channels “:SER_1” and “:SER_2”. The variables are initialized with 0 when a
warm restart is carried out or when a channel is opened or closed.
There are also differences in the way that the system waits for the feedback signal of
a read request: absolutely or conditionally. Absolutely means that the systemwaits until
the channel provides the data requested. In the case of conditional waiting, the system
checks whether data are available.

2.2.11.2 Syntax

CREAD (Handle, State, Mode, Timeout, Offset, Format,
Var1,..., VarN)

Argument Type Explanation

Handle INT The handle variable transferred by “COPEN”.
Note: the variable “$CMD” will be rejected!

2 Reference section (continued)

43 of 135

RefGuideR4.1 09.01.00 en

State STATE_T “CMD_STAT” is an enumeration type which is the first
component of the “State” variable of the structure type
“STATE_T”. “CMD_STAT” can have the following
values which are relevant for “CREAD”:
CMD_OK Command successfully executed;

No data available in #COND mode
CMD_TIMEOUT Reading aborted in “ABS” mode due to

the defined time limit being exceeded;
DATA_OK A data block has been received from

the channel. All of the data have been
assigned to the variables in accordance
with the format description. However, it
is not necessary for all the variables to
have been described (see also the
status variable “HITS” below);

DATA_BLK Data have been read but further data
which can be read using the mode
“SEQ” are ready.

DATA_END Data have been read. The data block
has been completely read;

CMD_ABORT Reading has been aborted, e.g. due to
an error message from the channel or
to a fatal error during read--out of the
data. If the format specification and the
variable type do not agree, reading is
aborted not with CMD_ABORT but with
DATA_BLK;

FMT_ERR Incorrect format specification or non--
corresponding variable.

Other components of the State variable that are
important for CREAD:
HITS Number of correctly read formats.
LENGTH Length of the “%s” or “%r” format that

occurs first in the format. The lengths of
all following “%s” or “%r” formats are
not determined. If necessary, use
several “CREAD” statements.

Mode MODUS_T “MODUS_T” is an enumeration type that can have the
following values that are relevant for “CREAD”:
ABS Active reading of the channel. The function

waits until the channel makes a data block
available or until waiting is aborted by Timeout.

COND Unrequested reading of a channel.
SEQ Completion of the reading of a data block from

Bytes Offset onwards that has previously been
requested using “ABS” or “COND” or returned
to “CWRITE” as a reply and which has not yet
been completely read out.

Reference Guide

44 of 135

RefGuideR4.1 09.01.00 en

Timeout REAL The parameter “Timeout” can be used to specify a time
in seconds, after which the wait for a data block is
aborted. A Timeout with the value 0.0 corresponds to
an endless wait.
A value over 60 or negative values are rejected. A
system--related inaccuracy is inherent in the wait time.

Offset INT The variable “Offset” is used to specify the number of
bytes in the data that have been received after which
the system is to start reading. If reading is to start from
the beginning, Offset must be set to 0 (zero).
After a “CREAD” statement that does not assign all of
the data received to program variables, Offset specifies
the number of characters that have been assigned so
far.

Format CHAR[] The variable “Format” of the type “CHAR[]” (Textstring)
contains the format of the text that is to be generated.
The structure of the variable largely corresponds to the
format string of the function “FPRINTF” of the “C”
programming language.

Var The variables corresponding to “Format”.

2.2.11.3 Description

The “CREAD” statement is used for reading data from open channels. Two cases are
distinguished here:

G Active reading
The program requests an input via a channel. The channel drivers set an input request
and return the data that are received to the CREAD statement as a result.

G Passive reading
Another partner has written data to a channel without being requested to and expects
the data to be collected. A predefined variable is made available for each of the
channels “SER_1” and “SER_2”.

INT $DATA_SER1 or
INT $DATA_SER2,

and these are incremented by the channel driver after the arrival of unrequested data.
The variables are initialized with 0 (zero) when the system is started or when a channel
is opened or closed.

There are also differences in the way that the system waits for the feedback signal of a read
request. The “CREAD” statement can wait absolutely or conditionally.

-- Absolutelymeans that the system waits until the channel provides the data of the
type requested.

-- In the case of conditional waiting, the system checks whether data are available.

By using the feedback signal, it can be determined whether the read statement was
successful or not. The relevant procedure is defined by the parameter “Mode”.

If a Handle that does not come from a “COPEN” statement of the process is transferred in
the “CREAD” statement or if the channel has already been closed again, the
acknowledgment message “INVALID HANDLE” is displayed.

2 Reference section (continued)

45 of 135

RefGuideR4.1 09.01.00 en

The specification of other modes or of non--initialized variables causes an error to be
detected in the variable “Status”. If reading with “ABS” oder “COND” is successful, the data
of the data block that was previously received are overwritten, even if they have not yet
been completely read out.
The text that is returned is segmented in accordance with the format specification. The
values that are determined are assigned to the appropriate variables, with the system
checking whether the value is valid for each variable. A conversion specification for the
variable “Format” supports the formats described in Kernighan/Ritchie (The C
Programming Language, Prentice Hall, 1978), with the exception of o, p, n, u and [list].
The length specifications “H” and “L” may not be used.
Only 9 format parameters may be specified in a CREAD statement.
If several variables are available for formatting, the read--in must be continued in #SEQ
mode.
The system cannot distinguish between upper and lower--case letters. Read--in is aborted
after the occurrence of the first error (unsuitable format or invalid value).
The conversion character “R”, which reads in either a byte sequence of the specified length
(similar to with writing, e.g. “%2.5r”) or all bytes up to the end of the message, is also
introduced.
Unlike the other formats, the reading of an individual byte must be explicitly stated using
“%1r”.
There is no point specifying a width with the format “%c”; such a specification is therefore
rejected. The byte sequence can be assigned to a sufficiently large variable of type INT,
REAL, CHAR, BOOL, ENUM or to one--dimensional arrays of these types.
It is assumed that integer data appear in “little endian” format and are signed.
Data of type Real must be in 32--bit representation in IEEE 754 standard format

bit 31 sign,
bit 30--23 exponent,
bit 22-- 0 mantissa.

Reference Guide

46 of 135

RefGuideR4.1 09.01.00 en

The types and values are checked in accordance with the following table at run time:

Format

Variable

%d

%i

%x

%f

%e

%g

%c %s %1r

(3)

%1.

hWDHi

r

%2r

(3)

%2.

hWDHi

r

%4r
(3)

%4.

hWDHi

r

(4)

%r

(3)

%.

hWDHi

r

(Signal)
INT

X -- X -- X -- X -- X -- X --

INT array -- -- -- -- -- X -- X -- X X X

REAL X X -- -- -- -- -- -- X -- X --

REAL
array -- -- -- -- -- -- -- -- -- X X X

(Signal)
BOOL (1) X -- X -- X -- X -- X -- X --

BOOL
array -- -- -- -- -- X -- X -- X X X

ENUM (2) X -- X -- X -- X -- X -- X --

ENUM
array -- -- -- -- -- X -- X -- X X X

CHAR X -- X -- X -- -- -- -- -- X --

CHAR
array -- -- -- X -- X -- -- -- -- X X

Remarks

G Every value that is not equal to 0 (zero) is converted to TRUE

G The system checks whether the value is a permissible ENUM value. If it is not, reading
is aborted. ENUM begins at 1.

G If there are not enough data available to satisfy the requirements of the format (e.g.
%2.5r, but only 7 bytes are present), nothing is read for this format and the CREAD
statement is aborted. The ignored data are, however, still ready for reading.

G Only as many bytes as can fit into the variable are read. The rest are still ready for
reading. If the array is actually big enough but the number of available bytes is not a
multiple of the size of an array element, the redundant bytes for the following format or
for the next CREAD statement are left for reading.

A message that is not completely read can be read further by the following “CREAD” calls.
The number of bytes of the “%s” or “%r” format specified first in the format string that have
actually been read is returned in the status variable.

All of the other lengths are not determined. It is therefore advisable to use “%s” and “%r”
formats only once in a format string and to repeat the “CREAD” call.

If the “%s” or “%r” format is not among the formats that have been successfully read (see
“HITS” of the variable State), the value of “LENGTH” is not changed by the statement.

2 Reference section (continued)

47 of 135

RefGuideR4.1 09.01.00 en

Particularly time--intensive input and output operations can have a considerable effect on
program execution.
The following applies to all statements:
-- A statement always waits until it is completely finished and then returns to the program.
This is particularly important for the absolute CREAD statement for reading to text
channels.

-- Regardless of this, these statements can be interrupted by interrupt programs. Any
attempts to access channels there can only be interrupted by other interrupt
subprograms.

The complete definitions of the status and mode information for channel instructions can
be found in the “CHANNEL” declaration. See Section 2.2.5.

A complete example of a program can be found in the chapter “CHANNEL”.

Reference Guide

48 of 135

RefGuideR4.1 09.01.00 en

CWRITE

2.2.12 CWRITE

2.2.12.1 Brief information

The “CWRITE” statement enables texts to be written to an open channel, or commands to
be written to a command channel.

Application example: Data exchange (write statement) between KR C1 and a partner
device (PC, intelligent sensor ...).

2.2.12.2 Syntax

CWRITE (Handle, State, Mode, Format, Var1, ..., VarN)

Argument Type Explanation

Handle INT The “Handle” variable transferred by “COPEN” or the
predefined variable “$CMD”.

State STATE_T “CMD_STAT” is an enumeration type which is the first
component of the State variable of the structure type
“STATE_T”.
“CMD_STAT” can have the following values which are
relevant for CWRITE:
CMD_OK Command successfully executed;
DATA_OK The command has been successfully

executed. Data are ready to be read as
a reply;

CMD_ABORT Command not successfully executed
because “HANDLE” is not valid;

CMD_REJ Only with Weltronic protocol: BCC error
CMD_SYN Syntax error in the command. The

syntax of the command is wrong and
the command cannot therefore be
executed. This also applies when an
invalid Mode is specified.

FMT_ERR Incorrect format specification or
non--corresponding variable.

Another component of the status variable that is
important for “CWRITE”:
HITS Number of correctly written formats.

Mode MODUS_T Variable of type “MODUS_T” (structure type) defining
how the channels are written to. It can have the
following values:
SYNC The statement is not executed until the

data have been sent to the partner
station.

ASYNC The statement is not executed until the
channel driver has confirmed that the
data have been received.

2 Reference section (continued)

49 of 135

RefGuideR4.1 09.01.00 en

Format CHAR[] The variable “Format” contains the format of the text
that is to be generated.
The structure of the variable largely corresponds to the
format string of the function “FPRINTF” of the “C”
programming language.

Var The variables corresponding to “Format”.

2.2.12.3 Description

The statement “CWRITE” enables texts to be written to an open channel, or commands to
be written to a command channel.

The value of “Mode” is not relevant for writing to the command channel. If “Mode” is a
non--initialized variable in the other cases, the statement is aborted and an error flag is set
in the variable “Status”.

If “Mode” hasa value other thanSYNCorASYNC, data arewritten to the channel in theSYNC
mode.

The conversion specification for the variable Format has the following structure:
%FWGU

The following definitions apply here:

G F Formatting character +, --, #, etc. (optional).

G W Width, specifies the minimum number of bytes that are to be output (optional).

G G Precision, its significance is dependent on the conversion character. ’.’ or ’.*’ or
’.integer’ can be used (optional).

G U Permissible conversion characters: c, d, e, f, g, i, s, x and %. The system cannot
distinguish between upper and lower--case letters. In addition to the conversion
characters given above (corresponding to “FPRINTF” in “C”), the character “r” is
also available.

The format variable “%r” converts the value of its variable not into ASCII but into binary
notation. With the format “%r” , the system does not check whether the variable or the array
element is initialized.

By entering a width (“%2r”), you can specify to how many bytes the value is to be extended
or compressed. REAL values are an exception here.

When compressing the value, the high--order bytes are disregarded; the value is extended
by adding zero bytes at the end (little endian format).

If the width is not specified, the internal representation is output: 4 bytes for INTEGER, REAL
and ENUM, one byte for BOOL and CHAR.

The precision can only be specified for arrays and is interpreted as a repeat number. A
corresponding number of an array’s elements can be output, starting with the first. If the
repeat number is greater than the array, no array element is written and the output is aborted.

“*” cannot be specified for the precision. If a value for precision is omitted, the array is written
in its entirety.

The variables “Var1”, ..., “VarN” may not be of a structure type or an array of a structure type
(including structures such as “POS”). Types are checked in accordance with the following
table at run time.

Conversion is aborted if types are incompatible or when the systemencounters the first value
that has not been initialized, except in the case of “%r”. An error message is not output.

The incorrect format can be inferred from the value of HITS (see below).

Reference Guide

50 of 135

RefGuideR4.1 09.01.00 en

Boolean values are output as 0 or 1, ENUM values as numbers.

Format

Variable

%d

%i

%x

%f

%e

%g

%c %s %1r %1.

hWDHi

r

%2r %2.

hWDHi

r

%4r %4.

hWDHi

r

%r %.

hWDHi

r

(Signal)
INT

X X -- -- X -- X -- X -- X --

INT array -- -- -- -- -- X -- X -- X X X

REAL -- X -- -- -- -- -- -- X -- X --

REAL
array -- -- -- -- -- -- -- -- -- X X X

(Signal)
BOOL X -- -- -- X -- X -- X -- X --

BOOL
array -- -- -- -- -- X -- X -- X X X

ENUM X -- -- -- X -- X -- X -- X --

ENUM
array -- -- -- -- -- X -- X -- X X X

CHAR X -- X -- X -- -- -- -- -- X --

CHAR
array -- -- -- X -- X -- -- -- -- X X

The “CWRITE” statement, which can be used in programs at the control or robot levels,
triggers an advance run stop.

Particularly time--intensive input and output operations can have a considerable effect on
program execution.
The following applies to all statements: A statement always waits until it is completely
finished and then returns to the program. This is particularly important for the absolute
CWRITE statements for command channels.
Regardless of this, these statements can be interrupted by interrupt routines. Any attempts
to access channels there can themselves be interrupted again only by other interrupt
subprograms.
Commands which can return segmented or several feedback signals are rejected by the
command channel.
The complete definition of the status and mode information for channel instructions can be
found in the “CHANNEL” declaration.

2 Reference section (continued)

51 of 135

RefGuideR4.1 09.01.00 en

2.2.12.4 Example

Several examples of the “CWRITE” statement are given below.

Conversion of the value into decimal and hexadecimal format

Conversion of the value of “I” into decimal and hexadecimal ASCII format:

INT I
I=123

%D,I ;transmission data 3 bytes: 123

%X,I ;transmission data 2 bytes: 7B

Conversion of the value of “I” into binary notation

INT I
I=123
%R,I ;transmission data 1 byte:{ (Hex. 7B)

I=123456
%R,I ;transmission data 3 bytes:@â�(Hex.40E201)

Writing of the first 5 array names of R[]

Writing of the values of the first 5 array names of “R[]”. Random values are generated for
array elements that have not been initialized.

REAL R[10]

%.5R,R[] ; transmission data 20 bytes in binary notation

Output of values of all array elements

The following statement is used to output the values of all array elements:

REAL R[10]

%R,R[]

Output of certain array elements

Output of the array elements of “S”, ending with the first non--initialized element:

CHAR S[100]

%S,S[]

Writing of the first 50 array elements of S

Writing of the first 50 array elements of “S”, disregarding the initialization information:

CHAR S[100]

%.50R,S[]

Conversion of the internal value of the ENUM variable into ASCII

Conversion of the internal value of the “ENUM” variable into ASCII. The corresponding
number is output.

DECL ENUM_TYP E

%D,E

Reference Guide

52 of 135

RefGuideR4.1 09.01.00 en

Writing of two real values (defined length) with name

REAL W1,W2

W1=3.97

W2=-27.3

CWRITE(..,..,..,”Value1=%+#07.3F Value2=+#06.2F”,W1.W2)
;transmission data: Value1=+03.970 Value2=-27.30

A complete example of a program can be found in the chapter “CHANNEL”.

2 Reference section (continued)

53 of 135

RefGuideR4.1 09.01.00 en

DECL

2.2.13 DECL

2.2.13.1 Brief information

Declaration of variables and constants in programs and data lists.

2.2.13.2 Syntax

Declaration of variables in programs:

�DECL Data_Type Variable_Name1 �, ...,
Variable_NameN

Declaration of arrays in programs:

�DECL Data_Type Array_Name1 [Size1 �, ...,
Size3] �, ..., Array_NameN [SizeN1 �,...,
SizeN3]

Declaration of variables in data lists:

�DECL �GLOBAL Data_Type Variable_Name1 �, ...,
Variable_NameN

or with simultaneous value assignment:

�DECL �GLOBAL Data_Type Variable_Name = Value

Declaration of arrays in data lists:

�DECL �GLOBAL Data_Type Array_Name [Size1 �,...,
Size3] �, ..., Array_NameN [SizeN1 �,...,
SizeN3]

Declaration and initialization of constants in data lists:

DECL �GLOBAL CONST Data_Type Constant_Name = Value

Declaration and initialization of constant arrays in data lists:

DECL �GLOBAL CONST Data_Type Array_Name [Size1 �,...,
Size3]

Array_Name[1 �, 1, 1] = Value1
...
Array_Name[Size1 �, Size2, Size3] = ValueN

Reference Guide

54 of 135

RefGuideR4.1 09.01.00 en

Argument Type Explanation
Data_Type Simple data types are:

 INT, REAL, CHAR, BOOL

These can be any of the structure and enumeration
types predefined in the system files, e.g.:

 FRAME, POS, E6POS, AXIS, E6AXIS

These can be self--defined data types:

 structure types (STRUC) or
 enumeration types (ENUM)

Variable_Name,
Array_Name,
Constant_Name,
Object_Name

Name of the object that is to be declared.

Size INT Unsigned, positive, integral constant defining the
size of the array. The number of constants produces
the dimension of the array. The array dimension can
be a maximum of three.

Value Constant of the declared data type.

Array_Index INT Constant that can range from 1 to Size. It identifies
the array element that is being assigned a value.

Global variables and constants can only be declared in data lists.

In order to be able to use the keyword GLOBAL, the global option in the file “Progress.ini”,
in the INIT directory, must be set to TRUE:
GLOBAL_KEY=TRUE

In order to be able to use constants, the constant option CONST_KEY in the file
Progress.ini, in the INIT directory, must be set to TRUE:
CONST_KEY=TRUE

2.2.13.3 Description

All of the variables used in the programmust be declared in the declaration with a name and
a data type. Simple, complex and freely definable data types are available for doing so.

The declaration begins with the keyword DECL, followed by a data type and the list of
variables and arrays that are to have this data type. When declaring variables and arrays of
a predefined type, the keyword DECL can be omitted. In addition to the simple data types
INT, REAL, CHAR and BOOL, the data types POS, E6POS, FRAME, AXIS, E6AXIS etc.,
amongst others, are predefined. The declaration can be completely omitted for variableswith
the data type POS, since this data type is the standard data type and is assigned by default.
The keyword DECL may not be omitted from the declaration of user--defined structure or
enumeration types.

Declaration of arrays
Just as with variables, each data type can be used for arrays. In addition to the data type and
the array name, the array sizes and the dimension must also be declared for an array. The
dimension is determined by the number of array sizes that are specified. It can be amaximum
of three. The array sizes appear after the name of the array in square brackets and are

2 Reference section (continued)

55 of 135

RefGuideR4.1 09.01.00 en

separated by commas. Each array size is an unsigned, integral constant. It must be equal
to or greater than 1.

If an array is transferred as a formal parameter in a subprogram or function call, it must be
declared in the definition of this subprogram or function, just like a variable. The array sizes
must be omitted in this declaration but not the square brackets and the commas which
determine the array dimension.When calling the subprogram or function, the array sizes are
determined by the associated current parameters that are transferred.

Declaration of variables with a default setting
Variables can be declared in data lists and assigned an initial value as a default at the same
time. A declaration statement containing a default setting cannot be used in the declaration
section of programs and functions.

In the case of variables with simple data types, the initial value is to be specified as a simple
constant. With structure variables, the initial value is an aggregate.

The declaration statement for assigning a default setting to variables begins, just like with the
simple declaration, with the keyword DECL, a data type and the name of the variable that is
to be assigned a default setting.

An “=” sign and the initial value given in the form of a constant follow the variable name.When
declaring a default setting, you cannot list several variables in a declaration statement. A
separate declaration statement is required for each variable that is to be assigned a default
setting. The keyword DECL may also be omitted when assigning a default setting.

The data type of the constant to the right of the “=” sign must be compatible with the explicitly
specified data type on the left--hand side but does not have to be identical to it. If the data
types are compatible, the system automatically matches them, as in the case of a value
assignment.

Declaration of arrays with a default setting
Adeclaration statement containing a default setting cannot be used in the declaration section
of programs and functions. Nor can a single line in a data list contain both declarations and
initializations.

In the case of an array with a simple data type, the initial values are to be specified as simple
constants. In the case of arrays with a structure type, the initial value for each array element
is an aggregate.

When declaring default settings for arrays, a separate statement must be written for each
array element.

The declaration for assigning a default setting to an array consists of at least two blocks.

G The first block contains a normal array declaration with the declaration DECL.

G The second block contains the specification of an array element, followed by an “=” sign
and the initial value for this element.

G Further blocks of this type inwhich default settings are assigned to other array elements
may follow.

When assigning a default setting to more than one element of an array, the elements must
be specified in ascending sequence of the array index. The right--hand array index varies
fastest.

The data type of the constant to the right of the “=” sign must be compatible with the explicitly
declared data type of the array but does not have to be identical to it. If the data types are
compatible, the system automatically matches them, as in the case of a value assignment.

Assigning character strings as defaults
If you want to assign the same character string to all of the elements of an array of type
Character as a default setting, you do not have to assign it to each array element individually.
The right--hand array index is omitted (i.e. no index is written for a one--dimensional array)
and a character string constant is thus assigned as a default setting to an entire line.

Reference Guide

56 of 135

RefGuideR4.1 09.01.00 en

Declarations of variables of the data type “freely definable structure type” or “freely
definable enumeration type”

The keyword DECL must be programmed here if the following data type name is not a
predefined system data type. The data type definitions STRUC and ENUM must always
appear before the DECL declaration for all variables of this type.

2.2.13.4 Example:

Declaration without initialization.
DECL POS P1
; The keyword DECL can also be omitted
INT A1,A2
REAL VEL[7],ACC[7],B
DECL S_PAR_TYPE S_PAR[3]

Declaration of arrays with initialization (only in data lists).
INT A[7] ; Array for 7 integer values
A[1]=27 ; The first array element is assigned the value 27
A[2]=313
A[6]=11
CHAR TEXT1[80]
TEXT1[]=”Message Text”
CHAR TEXT2[2,80]
TEXT2[1,]=”First Message Text”
TEXT2[2,]=”Second Message Text”

Declaration of variables with initialization (only in data lists).
FRAME F1={X 123.4, Y -56.7, Z 89.56}

STRUC, ENUM, DEFDAT

2 Reference section (continued)

57 of 135

RefGuideR4.1 09.01.00 en

DEF ... END

2.2.14 DEF ... END

2.2.14.1 Brief information

Declaration of programs and subprograms.

2.2.14.2 Syntax

�GLOBAL DEF Program_Name(�Parameter_List)
�DECL Data_Type Parameter_Name1
...
DECL Data_Type Parameter_NameZ
�further declarations
�Statements
END

Parameter_List = Parameter_Name1
� , ..., Parameter_NameI : IN | �OUT � , ...,
� Parameter_NameN
� , ..., Parameter_NameZ : IN | �OUT

Argument Type Explanation
Program_Name The name of the program that is to be defined is

entered here. It is an object name and may not be
more than 24 characters long in the case of global
functions. The length is restricted by the controller’s
directory system.

Parameter_
List

The parameter list contains the following
specifications:

 Parameter names.
 In the case of output parameters of type Array

(input parameters cannot be arrays), the array
dimension is added to the name of the array
using the following notation:

[] One--dimensional array
[,] Two--dimensional array
[,,] Three--dimensional array

 The transfer mode of the respective parameter:

:IN Input parameter (call by value)

:OUT Output parameter (call by reference)
(default value)

Reference Guide

58 of 135

RefGuideR4.1 09.01.00 en

Declaration Only declarations may appear in the declaration
section. Program statements cannot be used here.
The border between the declaration section and the
statement section is defined by the first statement.

Statements Only statements may appear in the statement
section. Declarations cannot be used here. You can
exit a local subprogram using a RETURN statement.
Without a RETURN statement, the END statement is
the last statement to be executed.

2.2.14.3 Description

By default, the first program in an SRC file has the same name as the SRC file and is
recognized globally, even without using the keyword GLOBAL.

When a program is called, there are two kinds of parameter transfer: transfer with an input
parameter and transfer with an output parameter.

Input parameter (keyword IN)
Only the value of the variable is transferred here. This direct parameter transfer works like
the assignment of a default setting to the variable in the subprogram. The value that is
currently transferred can be a constant, a variable, a function call or a simple or complex
expression.

A value cannot be returned to the calling module in the case of an IN parameter (call by
value). It is only used for transferring a value to the subprogram.

If the data types of the current and formal IN parameters are not identical but are compatible,
the system automatically converts the type of the value that has been transferred. Arrays
cannot be transferred as an input parameter (IN).

Output parameter (keyword OUT)
A variable name is transferred here (call by reference). The variable must have a value at
the time of the subprogram call. This value can be used in the subprogram that is called.

A parameter of type OUT can be assigned a (new) value in the subprogram that is called.
For this reason, the data types of the current and formal parameters must be identical in the
case of the transfer mode OUT.

Transfer as an output parameter is the default setting, i.e. OUT does not have to be specified.

END statement
The END statement is always the last block of a global or local subprogram. The last block
of a subprogram that can be executed is either the RETURN statement or, if this is missing,
the END statement.

2 Reference section (continued)

59 of 135

RefGuideR4.1 09.01.00 en

2.2.14.4 Example:

Declaration of a program without formal parameters.
DEF PROG()
...
END

Declaration of a subprogram with the formal parameters Current and Voltage. Due to
the default setting, they are output parameters.
DEF WELD(CURRENT,VOLTAGE)
...
END

Declaration of a subprogram with the formal parameters Current and Voltage as input
parameters and RESULT as an output parameter.
DEF WELD(CURRENT:IN,VOLTAGE:IN,RESULT:OUT)
...
END

In the subprogram CALCULATE, some variables undergo arithmetic operations. After
the subprogram has been called, the variables A and B in the main program have the
following values: A=11, B=2.
DEF PROG()
INT A,B
A=1
B=2
CALCULATE(A,B)
...
END

DEF CALCULATE(X1:OUT,X2:IN)
INT X1,X2
X1=X1+10
X2=X2+10
END

END, DEFFCT, RETURN

Reference Guide

60 of 135

RefGuideR4.1 09.01.00 en

DEFDAT ... ENDDAT

2.2.15 DEFDAT ... ENDDAT

2.2.15.1 Brief information

Declaration of data lists.

2.2.15.2 Syntax

DEFDAT Data_List_Name �PUBLIC
�Declarations
ENDDAT

Argument Type Explanation
Data_List_
Name

The name of the data list that is to be defined is
entered here. It is an object name and can have a
maximum length of 24 characters. The length is
restricted by the controller’s directory system.

If the name of the data list is identical to that of a
module, the data list is then assigned to this module,
as a result of which the declarations of the data list
also apply in the module of the same name. A
module and the data list assigned to it form a
module package.

PUBLIC By adding this keyword, other modules and data lists
can also access this data list, and the variables, etc.,
that are defined here can be used in other module
packages. They must be declared using the keyword
GLOBAL.

Declaration  External declarations for subprograms and
function modules that are used in the module.

 Import declarations for imported variables.
 Declarations for variables.
 Declarations for signal and channel names.
 Declarations for structure and enumeration types.
 The variable declarations in the declaration

section of the data list may contain default
settings.

2.2.15.3 Description

In addition to the predefined data lists, you can define further data lists yourself. Data lists
are used for preparing program--specific and higher--level declarations. Variable values that
can be saved (=default settings) can be declared in data lists. In particular, the data lists can
contain taught positions. A data list can also exist as an independent object. In this case,
there is no module of the same name.

2 Reference section (continued)

61 of 135

RefGuideR4.1 09.01.00 en

The ENDDAT statement is always the last block of every data list.

No statements may appear in data lists, except the initialization of variables and
constants.

2.2.15.4 Example:

Declaration of a data list.
DEFDAT WELD
...
ENDDAT

Declaration of a data list with global accessibility.
DEFDAT CENDAT PUBLIC
...
ENDDAT

The module package PROG_1 consists of the module and the assigned data list
PROG_1.
This is omitted in the main program as it is declared and initialized in the data list. If the
variable OTTO in the main program is assigned a new value, this is also entered in the
data list and remains permanently stored there.
The “new” value is thus used after the controller has been switched off and back on
again. This is essential for online correction and other program modifications. If you
want to always start a main program with the same value, the desired value must be
assigned as a default to the appropriate variable in the main program.
DEFDAT PROG_1
INT OTTO = 0
ENDDAT

DEF PROG_1()
HALT ; OTTO is now 0
OTTO=25
HALT ; The data list now contains: INT OTTO=25
END

Global data lists: The variable OTTO is to be recognized in PROG_1 and PROG_2. It is
possible to allow an outside main program to access the variables defined in a data list.
To do so, the data list must be defined as PUBLIC and the variables must be declared
as GLOBAL.DEFDAT PROG_1 PUBLIC
GLOBAL INT OTTO = 0
ENDDAT

DEF PROG_1()
HALT
OTTO = 25
END

DEF PROG_2()
OTTO=27
END

Reference Guide

62 of 135

RefGuideR4.1 09.01.00 en

IMPORT

2 Reference section (continued)

63 of 135

RefGuideR4.1 09.01.00 en

DEFFCT ... ENDFCT

2.2.16 DEFFCT ... ENDFCT

2.2.16.1 Brief information

Declaration of functions.

2.2.16.2 Syntax

�GLOBAL DEFFCT Data_Type Function_Name (�Parameter_List)
�DECL Data_Type Parameter_Name1
...
DECL Data_Type Parameter_NameZ

�further declarations
�Statements
ENDFCT

Parameter_List = Parameter_Name1
� , ..., Parameter_NameI : IN | �OUT � , ...,
� Parameter_NameN
� , ..., Parameter_NameZ : IN | �OUT

Argument Type Explanation
GLOBAL The keyword GLOBAL makes the function available

for all loaded KRL programs.
Data_Type Data type of the function.

Function_
Name

Name of the function that is to be defined. It is an
object name and may not be more than 24
characters long. The length is restricted by the
controller’s directory system.

Parameter_
List

The parameter list contains the following
specifications:

 The parameter names.
 In the case of output parameters of type Array

(input parameters cannot be arrays), the array
dimension is added to the name of the array
using the following notation:

[] One--dimensional array
[,] Two--dimensional array
[,,] Three--dimensional array

 The transfer mode of the respective parameter:

:IN Input parameter (call by value)

:OUT Output parameter (call by reference)
(default value)

Reference Guide

64 of 135

RefGuideR4.1 09.01.00 en

Declarations Only declarations may appear in the declaration
section. The border between the declaration section
and the statement section is defined by the first
statement.

Statements Only statements may appear in the statement
section. The return value of the function is
transferred using the RETURN statement.

2.2.16.3 Description

A function sends a return value to the calling module. A function call is an expression and
the function can thus be assigned to a variable or used by other arithmetic statements.When
calling a function, there are two kinds of parameter transfer: transfer with an input parameter
and transfer with an output parameter.

Input parameter

A value is transferred. The direct parameter transfer works like the assignment of a default
setting to the variable in the function.

The value that is currently transferred can be a constant, a variable, a function call or a simple
or complex expression. A value cannot be returned to the calling module in the case of an
IN parameter (call by value). It is only used for transferring a value to the subprogram or
function.

If the data types of the current and formal IN parameters are not identical but are compatible,
the system automatically converts the type of the value that has been transferred. Arrays
cannot be transferred as an input parameter (IN).

Output parameter

A variable name is transferred here (call by reference). The variable can have a value at the
time of the subprogram call. This value can be used in the subprogram that is called.

A parameter of type OUT can be assigned a (new) value in the function that is called. This
value is then returned to the callingmodule, which canmake further use of it. For this reason,
the data types of the current and formal parameters must be identical in the case of the
transfer mode OUT.

Transfer as an output parameter is the default setting, i.e. OUT does not have to be specified.

ENDFCT statement

The ENDFCT statement is always the last block of a global or local function. The last block
of a function that can be executed is always the RETURN statement. If the interpreter
encounters an ENDFCT statement whilst executing a function, a runtime error occurs.

2 Reference section (continued)

65 of 135

RefGuideR4.1 09.01.00 en

2.2.16.4 Example

Declaration of a function of data type INT with the name FCT1 and the transferred
parameters P1 and P2.
DEFFCT INT FCT1(P1,P2)
...
ENDFCT

Declaration of a function of data type BOOL with the name WELD and the input
parameters CURRENT and VOLTAGE.
DEFFCT BOOL WELD(CURRENT:IN,VOLTAGE:IN)
...
ENDFCT

In a function, the difference between two variables is to be calculated and transferred to
the main program.
DEF PROG_1()
EXTFCT INT DELTA(INT:OUT,INT:OUT)
INT A,B,C
A=1
B=25
C=DELTA(A,B)
END

DEFFCT INT DELTA(X1:OUT,X2:OUT)
INT X1,X2,X3
X3=X2-X1
RETURN(X3)
ENDFCT

DEF, RETURN

Reference Guide

66 of 135

RefGuideR4.1 09.01.00 en

DIGIN

2.2.17 DIGIN

2.2.17.1 Brief information

Cyclic reading in of digital inputs.

2.2.17.2 Syntax

Reading a digital input:

DIGIN ON Signal_Value = Factor * $DIGINX ����� Offset

Termination of the read operation:

DIGIN OFF $DIGINX

Argument Type Explanation
Signal_Value Real The result of the operation is stored in Signal_Value.

It can be a variable or a signal name.
Factor Real The factor can be a constant, variable or signal name.

$DIGINX $DIGINX designates a predefined digital signal
name: $DIGIN1 to $DIGIN6.

Offset Real Offset can be a constant, variable or signal name.

All of the variables used in the DIGIN statement must be declared in data lists.

Accessing the digital inputs triggers an advance run stop. Array indices are only evaluated
once in the DIGIN ON statement. The expression that is produced after the array indices
have been replaced by numeric values is cyclically evaluated. Digital inputs cannot be used
in the INTERRUPT statement.

2.2.17.3 Description

The controller provides six digital interfaces which can be read via the predefined signal
variables $DIGIN1 to $DIGIN6. Each of the digital inputs can have a length of 32 bits and an
associated strobe output. The controller can interpret these inputs with or without a sign. The
digital inputs are configured in the file “$MACHINE.DAT”.

The digital inputs can be read over a period of time using DIGIN or can be assigned to a
variable of data type REAL once by means of the operator “=”. Two DIGIN ON statements
can be used at the same time. Two DIGIN ON statements can read the same digital input.
It is possible to logically combine digital inputs with other operators and to assign them to a
signal value by using the optional arithmetic of the DIGIN statement. A DIGIN ON statement
can also access analog input signals (see example).

The cyclic read--in of the digital inputs is deactivated using the DIGIN OFF statement
followed by the signal name.

2 Reference section (continued)

67 of 135

RefGuideR4.1 09.01.00 en

2.2.17.4 Examples

The digital input $DIGIN1 is assigned to the binary input signals $IN[1020] to $IN[1026].
The analog input $ANIN[1] is assigned the symbolic name FACTOR. The system variable
$TECHIN[1] is assigned the result of the product of the analog input value and the digital
input, increased by the value of the variable OFFSET. The DIGIN OFF instruction
deactivates the cyclic read--in of the digital inputs.
SIGNAL $DIGIN1 $IN[1020] TO $IN[1026]
SIGNAL FACTOR $ANIN[1]
DIGIN ON $TECHIN[1] = FACTOR * $DIGIN1 + OFFSET
...
DIGIN OFF $DIGIN1

SIGNAL, ANIN, ANOUT

Reference Guide

68 of 135

RefGuideR4.1 09.01.00 en

ENUM

2.2.18 ENUM

2.2.18.1 Brief information

Declaration of enumeration data types.

2.2.18.2 Syntax

�GLOBAL ENUM Enumeration_Type_Name Enumeration_Constant1
�,..., Enumeration_ConstantN

Argument Type Explanation
Enumeration_
Type_Name

Name of the new enumeration data type.

Enumeration_
Constant

The enumeration constants are the values that a
variable of the enumeration data type can take. The
name of each constant must be unambiguous within
the data type.

The keyword GLOBAL, in the context of declaring Enum data types, may only be used in
data lists.

2.2.18.3 Description

The enumeration type is a data type made up of a finite number of integer constants. The
enumeration constants represent the discrete values that an enumeration variable can take.
Variables with an enumeration type do not follow a continuous scale of values, but can only
take the constants that are listed in thedefinition as values. The constants are freely definable
names and can be defined by the user.

The enumeration type definition may appear in the declaration section of modules or in data
lists. Global ENUM declarations are only allowed in data lists.

Symbolic designation of enumeration constants

You are able to use short or full symbolic names.

If using short symbolic names, a “#” character is inserted before the nameof the enumeration
constant, e.g. #monday.

If using a full symbolic name, an enumeration constant is identified by the name of the
enumeration type followed by a “#” character and the name of the enumeration constant, e.g.
WEEK_TYPE#MONDAY. There are two instances where the full symbolic name of
enumeration constants must be given:

1. If the enumeration constant is used as a current parameter in a subprogramor function
call in an individual command outside the module.

2. If the enumeration constant appears on the left--hand side of a comparison.

The names of enumeration types should end in _TYPE so as to distinguish variable names
from enumeration types.

2 Reference section (continued)

69 of 135

RefGuideR4.1 09.01.00 en

2.2.18.4 Example

Declaration of an enumeration data type with the name STATE_TYPE and the
constants S_START, S_STOP and S_WAIT.
ENUM STATE_TYPE S_STOP, S_START, S_WAIT

An enumeration data type with the name SWITCH_TYPE and the constants ON and
OFF is declared in the following program. These are addressed in the program using
their short symbolic names.
DEF PROG()
ENUM SWITCH_TYPE ON, OFF
DECL SWITCH_TYPE ADHESIVE
IF A>10 THEN

ADHESIVE=#ON
ELSE

ADHESIVE=#OFF
ENDIF
END

DECL, STRUC

Reference Guide

70 of 135

RefGuideR4.1 09.01.00 en

EXIT

2.2.19 EXIT

2.2.19.1 Brief information

Unconditional exit from loops.

2.2.19.2 Syntax

EXIT

2.2.19.3 Description

The EXIT statement appears in the statement block of a loop. It may be used in any loop.

The EXIT statement can be used to exit the current loop. The program is then continued after
the ENDLOOP statement.

2.2.19.4 Example

Exit from an endless loop.
LOOP

A=(A+1)*0.5/B
IF A>=13.5 THEN

EXIT
ENDIF

ENDLOOP

FOR, WHILE, REPEAT, LOOP

2 Reference section (continued)

71 of 135

RefGuideR4.1 09.01.00 en

EXT

2.2.20 EXT

2.2.20.1 Brief information

Declaration of external subprograms.

2.2.20.2 Syntax

EXT Program_Source(�Parameter_List)

Parameter_List = Data_Type1
� , ..., Data_TypeI : IN | �OUT � , ...,
� Data_TypeN
� , ...,Data_TypeZ : IN | �OUT

Argument Type Explanation
Program_
Source

Identifies the path and the name of the subprogram
used.

Parameter_
List

The parameter list contains the following
specifications:

 The data types of all of the parameters of the
external subprogram in the defined sequence.

 In the case of array parameters, the array
dimension using the following notation:

[] One--dimensional array
[,] Two--dimensional array
[,,] Three--dimensional array

 The transfer mode of the respective parameter:

:IN Input parameter (call by value)
:OUT Output parameter (call by

reference) (default value)

The sequence of the parameter list must be
observed. The individual parameters are separated
from one another by commas.

EXT declarations cannot be used in subprograms.

2.2.20.3 Description

The EXT declaration is used to identify external subprograms to the program in which they
are called. Only the main program can be used (program name is the same as the name of
the SRC file), not other subprograms in the same file. Other subprograms in an SRC file can
be identified generally using the keyword GLOBAL.

The EXT declaration must be used to make both the name and path of the subprogram that
is to be called and the parameters that are used known to the compiler. By specifying a
parameter list, the required storage space is also clearly defined.

Reference Guide

72 of 135

RefGuideR4.1 09.01.00 en

2.2.20.4 Example

Declaration of an external subprogram with the name SP1 in the directory R1.
EXT /R1/SP1()

Declaration of an external subprogram with the name SP1 and declaration of the
required parameters.
EXT /SP1(INT,REAL:IN,CHAR[],INT[,,]:IN)

Declaration of an external subprogram with the name SP1 and declaration of the
required parameters.
DEF PROG() ; Main program
EXT SP1(INT:OUT,REAL:OUT,BOOL:IN)
INT A
REAL B
BOOL C
...
SP1(A,B,C)
...
END

DEF SP1 (X1:OUT,X2:OUT,X3:IN); External subprogram
INT X1
REAL X2
BOOL X3
...
END

DEF, EXTFCT

2 Reference section (continued)

73 of 135

RefGuideR4.1 09.01.00 en

EXTFCT

2.2.21 EXTFCT

2.2.21.1 Brief information

Declaration of external local functions.

2.2.21.2 Syntax

EXTFCT Data_Type Program_Source(�Parameter_List)

Parameter_List = Data_Type1
� , ..., Data_TypeI : IN | �OUT � , ...,
� Data_TypeN
� , ...,Data_TypeZ : IN | �OUT

Argument Type Explanation
Data_Type The data type must correspond to the function

declaration.
Program_
Source

Identifies the path and the name of the function used.

Parameter_
List

The parameter list contains the following
specifications:

 The data types of all of the parameters of the
external function in the defined sequence.

 In the case of array parameters, the array
dimension using the following notation:

[] One--dimensional array
[,] Two--dimensional array
[,,] Three--dimensional array

 The transfer mode of the respective parameter:

:IN Input parameter (call by value)
:OUT Output parameter (call by

reference) (default value)

The sequence of the parameter list must be
observed. The individual parameters are separated
from one another by commas.

EXTFCT declarations cannot be used in subprograms.

2.2.21.3 Description

The EXTFCT declaration is used to identify external functions to the program in which they
are called. Only the main program can be used (function name is the same as the name of
the SRC file), not other functions in the same file. Other functions in an SRC file can be
identified generally using the keyword GLOBAL.

Reference Guide

74 of 135

RefGuideR4.1 09.01.00 en

The EXTFCT declaration must be used to make both the name and path of the external
function that is to be called and the parameters used known to the compiler. By specifying
a parameter list, the required storage space is also clearly defined.

2.2.21.4 Example

Declaration of an external function with the name FCT1 in the directory R1.
EXTFCT /R1/FCT1()

DEF PROG()

; Main program
EXTFCT INT DELTA(INT:OUT,INT:IN)
INT A,B,C
...
A=5
B=20
C=DELTA(A,B)

; Function call
...
END

Declaration of an external function with the name FCT1 and the transfer parameters.
EXTFCT /FCT1(INT,REAL:IN,CHAR[],INT[,,]:IN)

Declaration of an external function with the name FCT1 and the transfer parameters.
EXTFCT FCT1(INT:OUT,REAL:OUT,BOOL:IN)

In a function, the difference between 2 variables is to be calculated and transferred to
the main program. The values of the variables after the function has been called are:
A=15, B=20, C=15.

DEF PROG()

; Main program
EXTFCT INT DELTA(INT:OUT,INT:IN)
INT A,B,C
...
A=5
B=20
C=DELTA(A,B)

; Function call
...
END

DEFFCT INT DELTA(X1:OUT,X2:IN)
; External function
INT X1,X2,X3
X1=X2-X1
X3=X1
RETURN(X3)
ENDFCT

2 Reference section (continued)

75 of 135

RefGuideR4.1 09.01.00 en

DEFFCT, EXT

Reference Guide

76 of 135

RefGuideR4.1 09.01.00 en

FOR ... TO ... ENDFOR

2.2.22 FOR ... TO ... ENDFOR

2.2.22.1 Brief information

Counting loop.

2.2.22.2 Syntax

FOR Counter = Start TO End �STEP Increment
�Statements
ENDFOR

Argument Type Explanation
Counter INT An integer variable used as a loop counter.

Start INT Arithmetic expression specifying the initial value for
the counter.

End INT Arithmetic expression specifying the final value for
the counter.

Increment INT Arithmetic expression of the amount by which the
counter is incremented with each execution of the
loop:

 Increment may be negative
 Increment may not be zero
 Increment may not be a variable

If no increment is specified, the default value 1 is
used.

2.2.22.3 Description

A specified number of runs can be very clearly programmed using the FOR loop. The loop
runs are counted with the aid of the counter.

The execution condition for FOR is as follows:

 with a positive increment: if the counter is greater than the final value, then the loop
is ended.

 with a negative increment: if the counter is less than the final value, then the loop is
ended.

The execution condition is checked before each loop run. In extreme cases, the FOR loop
is not executed at all.

An expression of type Integer must be given for both the initial and final values of the counter.
The expressions are evaluated once at the start of the loop. The timer is preset to the initial
value and is incremented or decremented after each loop run.

The increment may not be zero. If no increment is specified, it has the default value 1.
Negative values can also be used for the increment.

The value of the counter can be used in the statements inside and outside of the loop.Within
the loop, it serves, for example, as an up--to--date index for the processing of arrays. After
exiting the loop, the counter retains its most recent value.

There must be an ENDFOR statement for every FOR statement. After completion of the last
loop execution, the program is resumed with the first instruction after ENDFOR. The loop
execution can be exited prematurely using the EXIT statement.

2 Reference section (continued)

77 of 135

RefGuideR4.1 09.01.00 en

2.2.22.4 Example

FOR loop that increases variable B by 1 in 10 executions.
FOR A=1 TO 10

B=B+1
ENDFOR

FOR loop that, in steps of two, increments counter A after each run and increases
variable B by the value of the counter. Should variable B reach the value 10, the loop is
prematurely ended.
FOR A=1 TO 15 STEP 2

B=B+A
IF B==10 THEN

EXIT
ENDIF

ENDFOR

EXIT, SWITCH, REPEAT, WHILE, LOOP

Reference Guide

78 of 135

RefGuideR4.1 09.01.00 en

GOTO

2.2.23 GOTO

2.2.23.1 Brief information

Unconditional jump statement.

2.2.23.2 Syntax

GOTO Marker

Argument Type Explanation
Marker Marker describes the destination of the jump

statement.

2.2.23.3 Description

The unconditional jump statementGOTO is a programexecution instruction. After theGOTO
statement has been processed, the program will resume execution at the point specified by
this statement.

The destination must be in the same subprogram or function as the GOTO statement. It is
defined by the marker followed by a colon.

Jumping to a destination in an IF statement or in a loop from outside, or from one CASE
statement to another CASE statement is not possible.

The program very quickly becomes confusing and unstructured when using GOTO. It is
better to use the branching statement IF or the selection statement SWITCH instead.

2.2.23.4 Example

Unconditional jump to the program position MARKER_1.
GOTO MARKER_1

Unconditional jump from an IF statement to the program position END.
IF X>100 THEN

GOTO END
ELSE

X=X+1
ENDIF
A=A*X
...
END:
END

IF, SWITCH, REPEAT, WHILE, LOOP

2 Reference section (continued)

79 of 135

RefGuideR4.1 09.01.00 en

HALT

2.2.24 HALT

2.2.24.1 Brief information

Interrupts program execution and halts processing.

2.2.24.2 Syntax

HALT

2.2.24.3 Description

The HALT statement stops execution of the program. The last motion instruction to be
executed will, however, be completed.

Execution of the program can only be resumed using the Start key. The next instruction after
HALT is then executed.

In an interrupt routine, program execution is only stopped after the advance run has
been completely executed. In the event of a BRAKE statement, on the other hand,
program execution is stopped immediately.

WAIT FOR, WAIT SEC, BRAKE

Reference Guide

80 of 135

RefGuideR4.1 09.01.00 en

IF ... THEN ... ENDIF

2.2.25 IF ... THEN ... ENDIF

2.2.25.1 Brief information

Execution of statements depending on the result of a logical expression.

2.2.25.2 Syntax

IF Condition THEN
Statements

�ELSE
Statements

ENDIF

Argument Type Explanation
Condition BOOL Logical expression which can contain a Boolean

variable, a Boolean function call or a logical
operation with a Boolean result, e.g. a comparison.

2.2.25.3 Description

The branching statement IF is a program execution instruction. Depending on a condition,
either the first statement block (THEN block) or the second statement block (ELSE block) is
executed. The program is subsequently continued with the statements following ENDIF.

There is no limit on the number of statements contained in the statement blocks. Several IF
statements can be nested in each other.

The keyword ELSE and the second statement block may be omitted. If the condition is not
satisfied, the program is then continued at the position immediately after ENDIF.

There must be an ENDIF for each IF.

2.2.25.4 Example

IF loop without a second statement block.
IF A==17 THEN

B=1

ENDIF

IF loop with a second statement block.
IF $IN[1] THEN

$OUT[17]=TRUE
ELSE

$OUT[17]=FALSE
ENDIF

2 Reference section (continued)

81 of 135

RefGuideR4.1 09.01.00 en

IMPORT ... IS

2.2.26 IMPORT ... IS

2.2.26.1 Brief information

Import of data from data lists.

2.2.26.2 Syntax

IMPORT Data_Type Import_Name IS Data_Source..Data_Name

Argument Type Explanation
Data_Type The data must be imported with the data type with

which they are declared in the external data list.
Import_Name The imported data can be assigned a name different

to the one that they have in the external data list.
Data_Source The data source identifies the path and the name of

the data list from which the data are to be imported.
Data_Name The data name corresponds to the variable name

assigned to the data in the external data list.

2.2.26.3 Description

The IMPORT statement allows external data lists bearing the attribute “PUBLIC” to be
accessed. The IMPORT statement allows variables, entire arrays or array elements to be
imported into your own programs or data lists from an external data list. Each variable that
is to be imported requires its own IMPORT statement. Variables that have already been
imported cannot be accessed using another IMPORT statement. The variables must be
imported from the data lists in which they were originally created.

The data must be imported with the same data type with which they are declared in the
external data list. The system does not check that the correct data types have been selected
until the linking operation is carried out.

The data can be given a different name in your own data list or program to the one that they
have in the external data list.

The directory and the name of the data list are specified by the path. The data name
corresponds to the name used by the variable in the external data list.

The data source and data nameare connected to one another by two periods. No blanksmay
appear between the two periods.

Reference Guide

82 of 135

RefGuideR4.1 09.01.00 en

2.2.26.4 Example

Import of the value of the integer variable VALUE from the data list DATA. The variable
name VALUE is retained.
IMPORT INT VALUE IS /DATA..VALUE

Abbreviated form
IMPORT INT VALUE

Import of the POS array POS_EX from the data list R1/POSITION. The variable name
is to be POS 1 in your program.
IMPORT POS POS1[] IS /R1/POSITION..POS_EX

DEFDAT

2 Reference section (continued)

83 of 135

RefGuideR4.1 09.01.00 en

INTERRUPT DECL ... WHEN ... DO

2.2.27 INTERRUPT DECL ... WHEN ... DO

2.2.27.1 Brief information

Declaration of an interrupt.

2.2.27.2 Syntax

GLOBAL INTERRUPT DECL Prio WHEN Event DO Subprogram

Argument Type Explanation
GLOBAL The keyword GLOBAL is used for the identification of

interrupts, including at levels above the subprogram in
which they are declared. If an interrupt has been
declared in a subprogram, it is also recognized in the
main program in which it is called.

Prio INT Arithmetic expression specifying the priority of the
interrupt. Priority levels 1 to 128 are available, but the
range 40--80 is reserved for automatic priority
allocation by the system.
An interrupt with priority 1 is processed first.

Event BOOL Logical expression defining the interrupt event. The
following are permissible:

 A Boolean constant
 A Boolean variable
 A signal name
 A comparison
 A simple logical operation: NOT, OR, AND or

EXOR

The following cannot be used:

 Structure components
Subprogram Name and parameters of the subprogram (interrupt

routine) that is to be executed when an interrupt
occurs.

If the program has reached a HALT statement, interrupts are still detected and
executed (including motion instructions!). After the instruction has been executed,
the program is once again paused at the HALT statement.

The interrupt declaration is an instruction. It must not, therefore, be located in the
declaration section!

When first declared, an interrupt is deactivated and disabled.

Runtime variables may not be transferred as interrupt routine parameters, apart from
variables declared in a data list.

Reference Guide

84 of 135

RefGuideR4.1 09.01.00 en

Up to 32 interrupts may be declared at any one time.

2.2.27.3 Description

The interrupt function allows the user to react to an event that does not occur synchronously
with program execution, using a program statement. Such events can be an Emergency
Stop, error messages, input signals, etc. The possible causes of an interrupt and the
system’s reaction to each of them are defined using the interrupt declaration. Each interrupt
is assigned a priority, an event and the interrupt routine that is to be called. 32 interrupts may
be declared at the same time. A declaration may be overwritten by another at any time.

A defined interrupt triggers a reaction if all four of the following conditions are satisfied:

1. The interrupt must be activated (INTERRUPT ON).
2. The interrupt must be enabled (INTERRUPT ENABLE).
3. The interrupt must have the highest priority.
4. The associated eventmust have occurred. This event is detected bymeans of an edge

when it occurs (edge--triggered).

If several interrupts occur at the same time, the interrupt with the highest priority is processed
first, then those of lower priority. The interrupt is not detected until the level at which it is
declared. At higher programming levels, despite being activated, the interrupt is not
recognized. In other words, an interrupt declared in a subprogram is not recognized in the
main program. In order to be recognized in the main program and at all other levels, it must
be declared as global.

After the event has been detected, the current actual position of the robot is stored and the
interrupt routine is called. This can be a local subprogramor an external subprogrammodule.
As usual, it is ended using the RETURN or END statement. The interrupted program is
subsequently resumed at the point where the interrupt occurred (except in the case of
RESUME).

Statements that trigger an advance run stop in the normal program (e.g. $OUT[]) do not do
so in the interrupt subprogram. The interrupt routine runs on the command level, i.e. it is
executed block by block in sequence.

Interrupts to the system variables $EM_STOP and $STOPMESS are also executed in the
event of an error, i.e. the INTERRUPT statements are executed despite the robot being
stopped (but motion instructions are disregarded).

Each declared and activated interrupt can be detected once during an operator stop. After
restarting the system, the interrupts that have occurred are executed in order of their priority
(if they are enabled). The program is subsequently continued.

When calling the interrupt routine, the parameters are transferred in exactly the same way
as for normal subprogram calls.

2 Reference section (continued)

85 of 135

RefGuideR4.1 09.01.00 en

2.2.27.4 Example

Definition of an interrupt with priority 5 that calls the subprogram STOPSP if the variable
$STOPMESS is true.
INTERRUPT DECL 5 WHEN $STOPMESS DO STOPSP()

Definition of an interrupt with priority 23 that calls the subprogram SP1 with the
parameters 20 and VALUE if $IN[12] is true.
INTERRUPT DECL 23 WHEN $IN[12]==TRUE DO SP1(20,VALUE)

2 objects, which can be detected by 2 sensors connected to inputs 6 and 7, are located
on a pre--programmed path. The robot is to be moved subsequently to these two
positions.
DEF PROG()

; Main program
...
INTERRUPT DECL 10 WHEN $IN[6]==TRUE DO SP1()
INTERRUPT DECL 20 WHEN $IN[7]==TRUE DO SP2()
...
LIN START_POINT
INTERRUPT ON
INTERRUPT ENABLE
LIN END_POINT
INTERRUPT OFF

; Move to reference point
LIN POINT1
LIN POINT2
...
END

DEF SP1()

; Local interrupt routine 1
POINT1=$POS_INT
END

DEF SP2()

; Local interrupt routine 2
POINT2=$POS_INT
END

INTERRUPT, BRAKE, RESUME, TRIGGER

Reference Guide

86 of 135

RefGuideR4.1 09.01.00 en

INTERRUPT

2.2.28 INTERRUPT

2.2.28.1 Brief information

Activation and deactivation of interrupts.

2.2.28.2 Syntax

INTERRUPT Action �Priority

Argument Type Explanation
Action Keyword The relevant keyword is entered here:

 ON to activate
 OFF to deactivate
 ENABLE to enable
 DISABLE to disable

a declared interrupt.
Priority INT Arithmetic expression specifying the priority of the

interrupt that you want to activate or deactivate.

If this parameter is omitted, the statements for
activating and deactivating interrupts refer to all
declared interrupts and the statements for enabling
and disabling interrupts refer to all activated
interrupts.

2.2.28.3 Description

This statement is used to activate, deactivate, enable and disable the execution of an
interrupt.

If a declared interrupt is activated, it is monitored cyclically. When an event is detected, the
occurrence of the event and the current actual position are stored. A deactivated interrupt
is not executed.

An activated interrupt can be enabled or disabled. The disabling statement allows parts of
a program to be safeguarded against interruption. A disabled interrupt will be recognized and
saved but not executed. As soon as they are enabled, the interrupts that have occurred are
executed in order of their priority. There is no further reaction to an event that has been saved
if the interrupt is switched off before triggering. If an interrupt occurs several times while it is
disabled, it is only executed once on being enabled.

When an interrupt occurs, this, together with all of the interrupts of lower priority, are disabled
for the entire duration of execution. When returning from the interrupt routine, they are
enabled again. This also applies to the current interrupt, which is immediately called again
if, for example, the signal is still on after the interrupt routine has been executed. If you want
to stop the interrupt being called again, it must be disabled or deactivated in the interrupt
routine. The interrupt routine is always completely executed, irrespective of whether the
interrupt has been disabled or deactivated.

An interrupt can itself be interrupted again after the first statement in the interrupt routine by
interrupts of higher priority. The programmer is thus able to prevent this by disabling or
deactivating one or all of the interrupts in the first instruction. After one of the interrupts of

2 Reference section (continued)

87 of 135

RefGuideR4.1 09.01.00 en

higher priority has been ended, the interrupted interrupt routine resumes at the point at which
it was interrupted.

Up to 16 interrupts may be activated at any one time. Bear this particularly in mind
in the case of global activation of interrupts.

Reference Guide

88 of 135

RefGuideR4.1 09.01.00 en

2.2.28.4 Example

The declared interrupt of priority level 2 is activated.
INTERRUPT ON 2

The declared interrupt of priority level 5 is deactivated.
INTERRUPT OFF 5

All declared interrupts are activated.
INTERRUPT ON

All declared interrupts are deactivated.
INTERRUPT OFF

The activated interrupt of priority level 3 is enabled.
INTERRUPT ENABLE 3

The activated interrupt of priority level 2 is disabled.
INTERRUPT DISABLE 2

All activated interrupts are enabled.
INTERRUPT ENABLE

All activated interrupts are disabled.
INTERRUPT DISABLE

A non--path--maintaining Emergency Stop is executed via the hardware during
application of adhesive. You would now like to use the program to stop application of
the adhesive and reposition the adhesive gun onto the path after enabling (by input 10).
DEF PROG()

; Main program
...
INTERRUPT DECL 1 WHEN $STOPMESS DO STOPSP()
...
LIN POINT1
INTERRUPT ON
INTERRUPT ENABLE
LIN POINT2
INTERRUPT OFF
...
END

DEF STOPSP()
; Interrupt routine

BRAKE F
; Quick braking of the motion

ADHESIVE=FALSE
WAIT FOR $IN[10]
LIN $POS_RET

; Position at which the path was left
ADHESIVE=TRUE
END

2 Reference section (continued)

89 of 135

RefGuideR4.1 09.01.00 en

INTERRUPT DECL, BRAKE, RESUME, TRIGGER

Reference Guide

90 of 135

RefGuideR4.1 09.01.00 en

LIN

2.2.29 LIN

2.2.29.1 Brief information

Linear motion.

2.2.29.2 Syntax

LIN Target_Position �Approximate_Positioning

Argument Type Explanation
Target_
Position

POS,
E6POS,
FRAME

Geometric expression specifying the target point of
the linear motion. Only Cartesian coordinates can be
used here.

The reference system for the Cartesian target
position is defined by the system variable $BASE.

The angle status specifications S and T for a target
position of type POS or E6POS are always
disregarded.

If the target position contains undefined structure
components, these values are taken unchanged
from the current position.

The target position can also be taught. If this is to be
done later, a “!” is programmed as the target
position.

Approximate_
Positioning

Keyword This option allows you to use approximate
positioning. The possible entries are:

 C_DIS (default value)
 C_ORI
 C_VEL

Programming the path velocity and acceleration of the TCP:

Variable Data type Unit Function
Velocities $VEL.CP REAL m/s Travel speed (path

velocity)
$VEL.ORI1 REAL /s Swivel velocity
$VEL.ORI2 REAL /s Rotational velocity

Accelerations $ACC.CP REAL m/sΟ Path acceleration
$ACC.ORI1 REAL /sΟ Swivel acceleration
$ACC.ORI2 REAL /sΟ Rotational acceleration

2 Reference section (continued)

91 of 135

RefGuideR4.1 09.01.00 en

Orientation control of the tool with LIN motions:

Variable Effect
$ORI_TYPE = #CONSTANT During the path motion the orientation remains

constant; the programmed orientation is ignored for
the destination point and that for the start point used.

$ORI_TYPE = #VAR During the path motion the orientation changes
continuously from the initial orientation to the
destination orientation.

System variables for defining the start of approximate positioning:

Variable Data type Unit Meaning Keyword in
the command

$APO.CDIS REAL mm Translational distance
criterion

C_DIS

$APO.CORI REAL  Orientation distance C_ORI
$APO.CVEL INT % Velocity criterion C_VEL

2.2.29.3 Description

In the case of LIN motions, the controller calculates a straight line equation from the current
position to the target position specified in the LIN instruction. The robot is moved to the end
point via auxiliary points, which are calculated and executed at intervals of one interpolation
cycle.

Just as for PTP motions, both the velocities and accelerations and the system variables
$TOOLand$BASEmust also be programmed for linearmotions. However, the velocities and
accelerations no longer refer to the motor speed of each axis but to the TCP. The system
variables

 $VEL for the path velocity and

 $ACC for the path acceleration

are available for defining them.

Angle status

In the case of LIN motions, the angle status of the end point is always the same as that of
the start point. For this reason, the specifications S and T for a target position of data type
POS or E6POS are always disregarded.

In order to alwaysensure an identicalmotion sequence, the constellationof the axes
must first be unambiguously defined. The firstmotion instruction of a programmust
therefore always be a PTP instruction specifying S and T.

Orientation

You can choose between constant and variable orientationwith the aid of the systemvariable
$ORI_TYPE:

G $ORI_TYPE=#VAR
During the linear motion, the orientation changes uniformly from the start orientation to
the target orientation (default setting).

G $ORI_TYPE=#CONSTANT
The orientation remains constant during the linearmotion. The programmed orientation
is disregarded for the end point and that of the start point is used.

Reference Guide

92 of 135

RefGuideR4.1 09.01.00 en

If axis angle 3or 5changessignduringaLINorCIRCmotion, theorientation canonly
be maintained if some of the axes accelerate and move at an infinitely fast rate. As
this is not possible, the controller will abort the motion with an error message when
themotor limit values are exceededor continue themotionat a reducedvelocity. The
reaction can be determined by the user.

The systemvariable $CP_VEL_TYPE is used to define the operatingmodes inwhich
the velocity is reduced in the event of the axis limit values being exceeded. The
variable can take 3 values:
#VAR_T1 Velocity reduction in T1 mode only.
#VAR_ALL Velocity reduction in all modes.
#CONSTANT This function is not activated.

The user can also define the operating mode in which the velocity reduction is
indicated by means of a message in the message window:
$CpVelRedMeld = 1 The velocity reduction is only indicated in modes T1 and T2.
$CpVelRedMeld = 100 The velocity reduction is indicated in all operating modes.

Approximate positioning

It is unnecessary and time--consuming to position the robot exactly to auxiliary points. You
can therefore start a transition to the following motion block (PTP, LIN or CIRC) at a defined
distance from the target position (so--called approximate positioning). Amaximum of half the
programmed distance may be approximated.

Approximate positioning is programmed in two steps:

G Definition of the approximate positioning range with the aid of the system variable
$APO:

-- $APO.CDI
translational distance criterion (activated by C_DIS): the approximate positioning
contour is started at a specified distance (unit [mm]) from the target point.

-- $APO.CORI
orientation distance (activated by C_ORI): the TCP leaves the individual block
contourwhen thedominant angle is less than the specified distance from the target
point.

-- $APO.CVEL
velocity criterion (activated by C_VEL): when the $APO.CVEL percentage of the
velocity defined in $VEL.CP is achieved, the approximate positioning contour is
initiated.

G Programming of the motion instruction with a target position and an approximate
positioning mode:

-- LIN--LIN or LIN--CIRC approximate positioning
For LIN--LIN approximate positioning, the controller calculates a parabolic path.
In the case of LIN--CIRC approximate positioning, a symmetric approximate
positioning contour cannot be calculated. The approximate positioning path
consists of two parabolic segments, which also have a tangential transition
betweeneach other and also to the individual blocks. To definewhere approximate
positioning is to begin, one of the keywords C_DIS, C_ORI or C_VEL has to be
programmed.

-- LIN--PTP approximate positioning
A precondition for approximate positioning is that none of the robot axes rotates
more than 180 in the LIN block and that the position S does not change. The start

2 Reference section (continued)

93 of 135

RefGuideR4.1 09.01.00 en

of approximate positioning is defined by one of the variables $APO.CDIS,
$APO.CORI and $APO.CVELand the endby the variable $APO.CPTP.One of the
keywordsC_DIS, C_ORI andC_VEL has to be programmed in the LIN instruction.

For approximate positioning, the computer advance runmust be enabled. If it is not,
themessage “Approximation not possible”will be displayed. In the case of LIN--PTP
approximate positioning, the advance run is limited to 1, however!

Notes:
 Program statements that stop the advance run may not appear between

approximate positioning blocks (remedy with CONTINUE).
 The greater the velocity and acceleration are, the greater the dynamic

deviations from the path will be (following error).
 Changing the acceleration has a considerably lesser effect on the path contour

than changing the velocity.

2.2.29.4 Example

Linear motion with taught target coordinates.
LIN !

Linear motion with programmed target coordinates; approximate positioning is activated.
LIN POINT1 C_DIS

Specification of the target position in (Cartesian) BASE coordinates.
LIN {X 12.3,Y 100.0,Z -505.3,A 9.2,B -50.5,C 20}

Specification of only two values for the target position. The old assignment is retained for
the remaining values.
LIN {Z 500,X 123.6}

Specification of the target position with the aid of the geometric operator: it is produced by
subtracting 30.5 millimeters in the X direction and adding 20 millimeters in the Z direction
of the TOOL coordinate system to point 1, which is defined in the BASE coordinate system.
LIN POINT1:{X -30.5,Z 20}

LIN--PTP approximate positioning from point 2 to point 3. Approximate positioning is
started 30 mm before point 2.
$APO.CDIS=30
$APO.CPTP=20
PTP POINT1
LIN POINT2 C_DIS
PTP POINT3

LIN_REL, PTP, CIRC, CONTINUE

Reference Guide

94 of 135

RefGuideR4.1 09.01.00 en

LIN_REL

2.2.30 LIN_REL

2.2.30.1 Brief information

Linear motion with relative coordinates.

2.2.30.2 Syntax

LIN_REL Target_Position �Approximate_Positioning

Argument Type Explanation
Target_

Position

POS,
E6POS,
FRAME

Geometric expression specifying the target point of the
linear motion. Only Cartesian coordinates can be used
here. These are to be interpreted relative to the current
position.

The target position cannot be taught.

Translational distances are executed in the direction of the
axes of the base coordinate system $BASE.

If the target position contains undefined structure
components, these values are set to 0, i.e. the absolute
values remain unchanged.

The predefined variable $ROTSYS defines the effect of the
programmed orientation components.

The angle status specifications S and T for a target
position of type POS or E6POS are always disregarded.

Approxi
mate_
Positio
ning

Keyword This option allows you to use approximate positioning. The
possible entries are:

 C_DIS (default value)
 C_ORI
 C_VEL

Programming the path velocity and acceleration of the TCP:

Variable Data type Unit Function
Velocities $VEL.CP REAL m/s Travel speed (path

velocity)
$VEL.ORI1 REAL /s Swivel velocity
$VEL.ORI2 REAL /s Rotational velocity

Accelerations $ACC.CP REAL m/sΟ Path acceleration
$ACC.ORI1 REAL /sΟ Swivel acceleration
$ACC.ORI2 REAL /sΟ Rotational acceleration

2 Reference section (continued)

95 of 135

RefGuideR4.1 09.01.00 en

Orientation control of the tool with LIN motions:

Variable Effect
$ORI_TYPE = #CONSTANT During the path motion the orientation remains

constant; the programmed orientation is ignored for
the destination point and that for the start point used.

$ORI_TYPE = #VAR During the path motion the orientation changes
continuously from the initial orientation to the
destination orientation.

System variables for defining the start of approximate positioning:

Variable Data type Unit Meaning Keyword in
the command

$APO.CDIS REAL mm Translational distance
criterion

C_DIS

$APO.CORI REAL  Orientation distance C_ORI
$APO.CVEL INT % Velocity criterion C_VEL

2.2.30.3 Description

The relative LIN instruction basically works in exactly the same way as the absolute LIN
instruction. The target coordinates are merely defined relative to the current position instead
of with the aid of absolute space or axis coordinates.

Apart from this, all of the information contained in the description of the absolute LIN
instruction applies here.

2.2.30.4 Example

The robot moves 100 mm in the X direction and 200 mm in the negative Z direction from
the current position. Y,A,B,C,S remain constant and T is determined by the motion.
LIN_REL {X 100,Z -200}

LIN--LIN approximate positioning from point 1 to point 2 and LIN--CIRC approximate
positioning from point 2 to point 3. Approximate positioning to point 1 is started when the
velocity has been reduced to 0.3 m/s (30% of 0.9 m/s). The approximate positioning
contour before point 2 begins 20 mm before the point.

$VEL.CP=0.9
$APO.CVEL=30
$APO.CDIS=20
LIN POINT1 C_VEL
LIN_REL POINT2_REL C_DIS
CIRC AUX_POINT,POINT3

LIN, PTP_REL, CIRC_REL, CONTINUE

Reference Guide

96 of 135

RefGuideR4.1 09.01.00 en

LOOP ... ENDLOOP

2.2.31 LOOP ... ENDLOOP

2.2.31.1 Brief information

Programming an endless loop.

2.2.31.2 Syntax

LOOP
Statements
ENDLOOP

2.2.31.3 Description

Cyclic executions can be programmed using LOOP. The statement block in the LOOP is
continually repeated. If you want to end the repeated execution of the statement block, you
must call the EXIT statement.

2.2.31.4 Example

Endless loop.
LOOP

A=A+1
IF A==65 THEN

EXIT
ENDIF

ENDLOOP

EXIT, SWITCH, FOR, REPEAT, WHILE

2 Reference section (continued)

97 of 135

RefGuideR4.1 09.01.00 en

PTP

2.2.32 PTP

2.2.32.1 Brief information

Point--to--point motion.

2.2.32.2 Syntax

PTP Target_Position �C_PTP �Approximate_Positioning

Argument Type Explanation
Target_
Position

POS, E6POS
AXIS,
E6AXIS,
FRAME

Geometric expression specifying the target point of
the motion. Cartesian and axis--specific coordinates
can be used here.

The reference system for a Cartesian target position
is defined by the system variable $BASE.
If the target position contains undefined structure
components, these values are taken unchanged
from the current position.

The target position can also be taught. If this is to be
done later, a “!” is programmed as the target
position.

C_PTP Keyword This option causes the robot to be approximately
positioned to the specified target point of a PTP
motion. This specification is sufficient for PTP--PTP
approximate positioning. The option
Approximate_Positioning must also be specified
for approximate positioning in a subsequent CP
block.

Approximate_
Positioning

Keyword This option is used to specify an approximate
positioning criterion for entering a subsequent CP
motion block. It can only be used in conjunction with
the C_PTP option. The possible entries are:

 C_DIS Distance criterion (default value)
 C_ORI Orientation criterion
 C_VEL Velocity criterion

2.2.32.3 Description

The point--to--point motion offers the quickest way of moving the robot arm from the current
position to a programmed target position. The axes are moved in a synchronized manner,
i.e. all of the axes start and end the motion at the same time. The controller calculates the
velocity of each axis so that at least one axis moves at the predefined limit for velocity and
acceleration. The maximum velocity and maximum acceleration must be programmed
separately for each axis. The system variables

� $VEL_AXIS[No] for the axis--specific velocity, and
 $ACC_AXIS[No] for the axis--specific acceleration

Reference Guide

98 of 135

RefGuideR4.1 09.01.00 en

are available. All of the values are specified as a percentage of a maximum that is defined
in the machine data.

If these two system variables have not been programmed before the first motion
instruction, an error message will occur when the program is executed! This also
applies to the system variables $TOOL and $BASE if the target position is specified
in Cartesian coordinates.

Angle status

Because of kinematic singularities, a robot can reach the same position in space with the
axes in different angular positions. The angular position of the axes can be unambiguously
defined with the aid of the specificationsS (Status) and T (Turn) in the geometric expression.
Both require integer inputs, which should preferably be entered in binary notation. The bits
have the following significance:

Status:

-- Bit 1: Position of the wrist root (0 basic area, 1 overhead area)

-- Bit 2: Angular position for axis 3 (0 negative, 1 positive)

-- Bit 3: Angular position for axis 5 (0 positive, 1 negative). The angular position in
each case is regarded in relation to a fixed zero position for each axis.

Turn:

-- Bit x: Angular position for axis x (0 positive, 1 negative)

The angular position in each case is regarded in relation to a fixed zero position for each axis.

If the specification for Turn T is omitted from a PTP motion, the robot will always
move along the shortest path. If the specification for Status S is omitted, the status
from the previous point is retained. In order to ensure that the motion sequence is
always identical, the first motion instruction of a programmust therefore always be
a PTP instruction specifying S and T.

Approximate positioning

It is unnecessary and time--consuming to position the robot exactly to auxiliary points. You
can therefore start a transition to the following motion block (PTP, LIN or CIRC) at a defined
distance from the target position (so--called approximate positioning). Amaximum of half the
programmed distance may be approximated.

Approximate positioning is programmed in two steps:

G Definition of the approximate positioning range with the aid of the system variable
$APO:

-- $APO.CPTPaxial approximate positioning criterion (activated by C_PTP):
approximate positioning is started when the leading axis is the $APO.CPTP
percentage of a maximum angle defined in $APO_DIS_PTP[No] away from the
approximate positioning point.

-- $APO.CDIS translational distance criterion (activated by C_DIS): the
approximate positioning contour is started at a specified distance (unit [mm]) from
the approximate positioning point.

-- $APO.CORI orientation distance (activated by C_ORI): the TCP leaves the
individual block contour when the dominant angle is less than the specified
distance from the approximate positioning point.

-- $APO.CVELvelocity criterion (activated by C_VEL): when the $APO.CVEL
percentage of the velocity defined in $VEL.CP is achieved, the approximate
positioning contour is initiated.

2 Reference section (continued)

99 of 135

RefGuideR4.1 09.01.00 en

G Programming of the motion instruction with a target position and an approximate
positioning mode:

-- PTP--PTP approximate positioning
Program the keyword C_PTP in the PTP instruction containing the target position
to which the robot is to be approximately positioned. The approximate positioning
range is defined by assigning a value to the variable $APO.CPTP. Approximate
positioning begins when the last axis falls below a specified angle to the target
position. The approximate positioning contour describes a parabola in space. This
is calculated by the controller, the programmer having no influence on its form.
Only the start (and thus also the end) of approximate positioning can be
programmed.

-- PTP--LIN or PTP--CIRC approximate positioning
A precondition for approximate positioning is that none of the robot axes rotates
more than 180 in the LIN or CIRC block and that the position S does not change.
The start of approximate positioning is defined by the variable $APO.CPTP. The
end of approximate positioning is defined by one of the variables $APO.CDIS,
$APO.CORI and $APO.CVEL. Now program the keyword C_PTP in the PTP
statement and one of the keywords C_DIS (default value), C_ORI or C_VEL to
define the approximate positioning.

For approximate positioning, the computer advance runmust be enabled. If it is not,
the message “Approximation not possible” will be displayed.

 The smaller $APO.CPTP is, the smaller the approximate positioning range will be.
 A $TOOL statement may not appear between two approximate positioning points.
 The greater the velocity and acceleration are, the greater the dynamic deviations

from the path will be (following error).
 Changing the acceleration has a considerably lesser effect on the path contour

than changing the velocity.
 If the robot is approximately positioned to points using $APO.CPTP=0, the robot

will actually be positioned to them exactly but the run time will nevertheless be
reduced (the following error does not have to be eliminated).

Reference Guide

100 of 135

RefGuideR4.1 09.01.00 en

2.2.32.4 Example

PTP motion with target coordinates still to be taught.
PTP !

PTP motion with programmed target coordinates; approximate positioning is activated.
PTP POINT1 C_PTP

Specification of the target position in (Cartesian) BASE coordinates.
PTP {X 12.3,Y 100.0,Z 50,A 9.2,B 50,C 0,S ’B010’,T ’B1010’}

Specification of the target position in axis--specific coordinates.
PTP {A1 10,A2 -80.6,A3 -50,A4 0,A5 14.2, A6 0}

Specification of only two values for the target position. The old assignment is retained for
the remaining values.
PTP {Z 500,X 123.6}

Specification of the target position with the aid of the geometric operator: it is produced by
adding 100 millimeters in the X direction of the TOOL coordinate system to point 1, which
is described in the BASE coordinate system.
PTP POINT1:{X 100}

PTP--LIN approximation from point 2 to point 3. The approximate positioning contour is
started when the leading axis has to complete a residual angle of less than 20% of its
maximum defined in $APO_DIS_PTP[No] on its way to point 2.
$APO.CORI=10
$APO.CPTP=20
PTP POINT1
PTP POINT2 C_PTP C_ORI
LIN POINT3

PTP_REL, LIN, CIRC, CONTINUE

2 Reference section (continued)

101 of 135

RefGuideR4.1 09.01.00 en

PTP_REL

2.2.33 PTP_REL

2.2.33.1 Brief information

Point--to--point motion with relative coordinates.

2.2.33.2 Syntax

PTP_REL Target_Position �C_PTP �Approximate_Positioning

Argument Type Explanation
Target_
Position

POS, E6POS
AXIS, E6AXIS

Geometric expression specifying the target point of
the motion. Cartesian and axis--specific coordinates
can be used here. These are to be interpreted
relative to the current position.

The target position cannot be taught.

Translational distances are executed in the direction
of the axes of the base coordinate system $BASE.

If the target position contains undefined structure
components, these values are set to 0, i.e. the
absolute values remain unchanged.

The predefined variable $ROTSYS defines the effect
of the programmed orientation components.

C_PTP Keyword This option causes the robot to be approximately
positioned to the specified target point of a PTP
motion. This specification is sufficient for PTP--PTP
approximate positioning. The option
Approximate_Positioning must also be specified
for approximate positioning in a subsequent CP
block.

Approximate_
Positioning

Keyword If the PTP motion is followed by a CP motion, this
option can be used to specify a criterion for the
transition to the CP motion. It can only be used in
conjunction with the C_PTP option. The possible
entries are:

 C_DIS Distance criterion (default value)
 C_ORI Orientation criterion
 C_VEL Velocity criterion

2.2.33.3 Description

The relative PTP instruction basically works in exactly the same way as the absolute PTP
instruction. The target coordinates are merely defined relative to the current position instead
ofwith theaid of absolute spaceor axis coordinates. You can thusmoveeach axis individually
by a specified number of degrees or move the robot along specified space coordinates.

Reference Guide

102 of 135

RefGuideR4.1 09.01.00 en

Apart from this, all the information contained in the description of the absolute PTP instruction
applies here.

2.2.33.4 Example

Axis 2 is moved 30 degrees in a negative direction. None of the other axes moves.
PTP_REL {A2 -30}

The robot moves 100 mm in the X direction and 200 mm in the negative Z direction from
the current position. Y,A,B,C,S remain constant and T is calculated in relation to the
shortest path.
PTP_REL {X 100,Z -200}

PTP--PTP approximation from point 1 to point 2 and PTP--CIRC approximation from point
2 to point 3. The approximate positioning contour is started when the leading axis has to
cover a residual angle of less than 40% of its maximum defined in $APO_DIS_PTP[No] on
its way to point 1 and point 2 respectively.
$APO.CDIS=30
$APO.CPTP=40
PTP POINT1 C_PTP
PTP_REL POINT2_REL C_PTP; C_DIS is set by default
CIRC AUX_POINT,POINT3

PTP, LIN_REL, CIRC_REL, CONTINUE

2 Reference section (continued)

103 of 135

RefGuideR4.1 09.01.00 en

PULSE

2.2.34 PULSE

2.2.34.1 Brief information

Activation of a pulse output.

2.2.34.2 Syntax

PULSE (Signal, Level, Pulse_Duration)

Argument Type Explanation
Signal BOOL Output to which the pulse is to be fed. The following

are permitted:

 OUT[No]
 Signal variable

Level BOOL Logical expression:

 TRUE represents a positive pulse output (high)
 FALSE represents a negative pulse (low)

Pulse_
Duration

REAL Arithmetic expression specifying the pulse duration.
Values range from 0.1 to 3.0 seconds. The pulse
interval is 0.1 seconds, i.e. the pulse duration is
rounded up or down accordingly.

2.2.34.3 Description

The PULSE statement is used for activating a pulse output. When the program statement is
executed, the binary output is set to a defined level for a specified period of time. After the
pulse duration has elapsed, the output signal is automatically reset by the system. The output
signal is set and reset irrespective of the previous length of the output.

If an output with an opposite level is activated during a pulse, the pulse is shortened. If a pulse
output is activated again before the falling edge, the pulse duration restarts. In the case of
pulse outputs with a positive level, the binary output is set to TRUE; in the case of pulse
outputs with a falling level, the binary output is set to FALSE.

Because the PULSE statement is executed internally by the controller at the low--priority
clock rate, a tolerance in the order of the pulse interval is produced (0.1 seconds). The time
deviation is about 1% -- 2% on average. The deviation is about 13% for very short pulses.

Reference Guide

104 of 135

RefGuideR4.1 09.01.00 en

 Pulse times outside the permitted interval are only detected when the program
is running; they trigger a program stop.

 A maximum of 16 pulse outputs may be programmed simultaneously.
 The programmed pulse time continues to elapse in the event of a process stop.
 In the case of RESET and CANCEL, on the other hand, the pulse is terminated.
 The active pulse can be influenced by interrupts.
 The PULSE statement triggers an advance run stop. Only in the TRIGGER

statement is it executed concurrently with robot motion.
 If the program reaches the END statement during an active pulse, the pulse is

not terminated.
 If a pulse output is programmed before the first motion block, the pulse duration

also elapses if the Start key is released again and the robot has not yet reached
the path (BCO).

The pulse is not terminated in the event of an Emergency Stop, an operator stop or
an error stop!

2.2.34.4 Example

If a pulse output is activated again before the falling edge, the pulse duration restarts.

PULSE($OUT[50],TRUE,0.5)
PULSE($OUT[50],TRUE,0.5)
Output 50

If an output is already set before the pulse, it will be reset by the falling edge of the pulse.

$OUT[50]=TRUE
PULSE($OUT[50],TRUE,0.5)
Output 50

If the same output is set during the pulse duration, it will be reset by the falling edge of the
pulse output.

PULSE($OUT[50],TRUE,0.5)
$OUT[50]=TRUE
Output 50

If output 50 is reset during the pulse duration, the pulse duration is reduced accordingly.

2 Reference section (continued)

105 of 135

RefGuideR4.1 09.01.00 en

PULSE($OUT[50],TRUE,0.5)
$OUT[50] = FALSE
Output 50

If a negative pulse is applied to the same output during the pulse duration of a positive pulse,
the positive level is immediately set to Low and then reset to High after the pulse duration
has elapsed.

PULSE($OUT[50],TRUE,0.5)
PULSE($OUT[50],FALSE,0.5)
Output 50

If a negative pulse is applied to an output that is set to Low, the output remains Low until the
end of the pulse and is then set to High.

$OUT[50] = FALSE
PULSE($OUT[50],FALSE,0.5)
Output 50

If an output is reset and then set again during a pulse, the output is reset again at the end
of the pulse.

PULSE($OUT[50],TRUE,0.8)
Output manipulation
Output 50

If a pulse is programmed before the END statement, the duration of program execution is
increased accordingly.

PULSE($OUT[50],TRUE,0.8)
END statement
Program active
Output 50

If program execution is reset or aborted (RESET/CANCEL) while a pulse output is active, the
pulse is immediately reset.

PULSE($OUT[50],TRUE,0.8)
RESET or CANCEL
Output 50

Reference Guide

106 of 135

RefGuideR4.1 09.01.00 en

REPEAT ... UNTIL

2.2.35 REPEAT ... UNTIL

2.2.35.1 Brief information

Program loop that is always executed at least once (non--rejecting loop). The termination
condition is checked at the end of the loop.

2.2.35.2 Syntax

REPEAT
Statements
UNTIL Termination_Condition

Argument Type Explanation
Termination
_Condition

BOOL Logical expression which can contain a Boolean
variable, a Boolean function call or a logical
operation with a Boolean result, e.g. a comparison.

2.2.35.3 Description

The REPEAT loop is repeated depending on a condition specified by the user.

This termination condition is checked after each loop execution. The statement block is
always executed at least once.
If the logic condition has the value FALSE, the statement block is repeated. If the logic
condition has the value TRUE, the program is resumed at the next statement after the
condition.

2.2.35.4 Example

The loop is executed 100 times. R has the value 101 after the last loop execution.
R=1
REPEAT

R=R+1
UNTIL R>100

The loop is to be executed until $IN[1] is true.
REPEAT

Statements
UNTIL $IN[1]==TRUE

The loop is executed once, even though the termination condition is already fulfilled
before the loop execution. The termination condition is not checked until the end of the
loop. After exiting the loop, R has the value 102.
R=101
REPEAT

R=R+1
UNTIL R>100

2 Reference section (continued)

107 of 135

RefGuideR4.1 09.01.00 en

EXIT, SWITCH, FOR, WHILE, LOOP

Reference Guide

108 of 135

RefGuideR4.1 09.01.00 en

RESUME

2.2.36 RESUME

2.2.36.1 Brief information

Aborting of subprograms and interrupt routines.

2.2.36.2 Syntax

RESUME

2.2.36.3 Description

TheRESUMEstatement is only executed during the processing of interrupts. It can therefore
only be used in a module that is initiated by an interrupt. All active interrupt routines and
subprograms up to the level at which the current interrupt was declared are aborted by
RESUME.

At the time that the RESUME statement is reached
 the variable $ADVANCE must be equal to 0 (no advance run).
 the advance run pointer must not be at the level at which the interrupt

was declared; it must be at least one level below this (otherwise the
program is stopped and has to be reset!).

 The motion after RESUME should not be a circular motion (CIRC) because the
start point is different each time (different circles).

 Changing the variable $BASE in the interrupt routine only has an effect there.
 An $ADVANCE assignment cannot be used in the interrupt routine.

2 Reference section (continued)

109 of 135

RefGuideR4.1 09.01.00 en

2.2.36.4 Example

The robot is to search for a part on a pre--programmed path. The part can be detected
by a sensor connected to input 15. After locating the part, the robot is not to continue to
the end point of the path, but is to return to the interrupt position, pick up the part and
take it to the setdown point.
DEF PROG() ; Main program
...
INTERRUPT DECL 1 WHEN $IN[15] DO FOUND()
...
PTP HOMEPOS
...
SEARCH() ; Search path must be programmed in a subprogram!
LIN SETDOWN POINT
...
END

DEF SEARCH() ; Subprogram for searching for the part
LIN START_POINT C_DIS
LIN TARGET_POINT
$ADVANCE=0 ; No advance run permitted
END

DEF FOUND() ; Interrupt routine
INTERRUPT OFF ; So that the interrupt routine is not executed twice
BRAKE
LIN $POS_INT ; Return to point where interrupt occurred
... ; Pick up part
RESUME ; Abort search path
END

INTERRUPT DECL, INTERRUPT, BRAKE, RETURN

Reference Guide

110 of 135

RefGuideR4.1 09.01.00 en

RETURN

2.2.37 RETURN

2.2.37.1 Brief information

Return from functions and subprograms.

2.2.37.2 Syntax

For functions:

RETURN Function_Value

For subprograms:

RETURN

Argument Type Explanation
Function_
Value

The data type
must correspond
to the function
type

The function value is the value that is
transferred when exiting a function.

2.2.37.3 Description

The RETURN statement is used in functions or subprograms. It ends the execution of the
function or subprogram and causes the system to return to the calling module.

RETURN statement in functions

The execution of functions must be ended by a RETURN statement containing the function
value that has been determined. The function value can be specified as a constant, a variable
or an expression. The data type must agree with the defined data type of the function in the
DEFFCT declaration.

RETURN statement in subprograms

The RETURN statement may only consist of the keyword RETURN in the statement section
of subprograms. It may not contain an expression. Function values cannot be transferred.

2 Reference section (continued)

111 of 135

RefGuideR4.1 09.01.00 en

2.2.37.4 Example

Return from functions to the calling module and transfer of the function value 0.
RETURN 0

Return from functions to the calling module and transfer of the function value
(X*3.1415)/360.
RETURN (X*3.1415)/360

Return from functions to the calling module and transfer of the function value X.
DEFFCT INT X()

INT XRET
XRET=10
RETURN XRET

ENDFCT

Return from the subprogram to the calling module.
DEF PROG_2()

Declarations
Statements

RETURN
END

DEFFCT, DEF

Reference Guide

112 of 135

RefGuideR4.1 09.01.00 en

SIGNAL

2.2.38 SIGNAL

2.2.38.1 Brief information

Declaration of signal names for input and output signals.

Interrupting the transfer of system states to the periphery.

2.2.38.2 Syntax

Declaration of signal names for input and output signals:

SIGNAL Signal_Name Interface_Name �TO Interface_Name

Interrupting the transfer of system states to the periphery:

SIGNAL System_Signal_Name FALSE

Argument Type Explanation
Signal_Name Any symbolic name.
Interface_
Name

Type of the predefined signal variable. The following
types can be selected:

 $IN[No] binary inputs
 $OUT[No] binary outputs
 $DIGIN[No] digital inputs
 $ANIN[No] analog inputs
 $ANOUT[No] analog outputs

No refers to the corresponding inputs or outputs of the
controller.

System_
Signal_Name

Name of a predefined binary system output, e.g. $T1.

FALSE System state is not transferred to the periphery. The
option TRUE is not available.

2.2.38.3 Description

The robot controller has two classes of interface:

1. simple process interfaces (signals)

2. logic interfaces (channels)

All of the interfaces are addressed using symbolic names. Your own Interface_Names
(symbolic names) are logically combined with the predefined signal variables by means of
the SIGNAL instruction. SIGNAL declarations must appear in the declaration section. An
output may appear in several SIGNAL statements. The number of signal numbers
corresponds to the number of inputs or outputs that the controller has. As can be seen from
the predefined signal variable names, there is a further distinction between binary and digital
inputs or outputs. In the case of binary inputs or outputs, inputs or outputs are addressed
individually. In the case of digital signals, several inputs or outputs are combined.

Several successive binary inputs or outputs can also be combined to form one digital input
or output using the instruction SIGNAL and the TO option. The signals combined in this way
can be optionally addressed with a decimal name, a hexadecimal name (prefix H) or with a

2 Reference section (continued)

113 of 135

RefGuideR4.1 09.01.00 en

bit pattern name (prefix B). They can also be processedwith Boolean operators. Amaximum
of 32 binary signals can be combined to form one digital signal. To combine signals, both
predefined signal names must be binary inputs or outputs and describe a continuously
ascending sequence with their index. A maximum of 32 inputs or outputs can be combined.

The robot controller can be fitted with an input/output module providing 32 inputs and 32
outputs. Outputs 1 to 28 have a load rating of 100 mA and outputs 29 to 32 have a 2 A
capacity. Unused outputs can be used as flags. The signal name is declared internally as
being of type BOOL in the case of binary inputs or outputs and of type Integer in the case
of digital inputs or outputs.

2.2.38.4 Example

The binary output $OUT[7] is assigned to the symbolic name Switch. The switch
($OUT[7]) is set.
SIGNAL SWITCH $OUT[7]

Switch = TRUE

The binary inputs $IN[1] to $IN[8] are combined to form one digital input under the
symbolic name INWORD.
SIGNAL INWORD $IN[1] TO $IN[8]

The binary outputs $OUT[1] to $OUT[8] are combined to form one digital output under
the symbolic name OUTWORD. The outputs $OUT[3], $OUT[4], $OUT[5] and $OUT[7]
are set by the digital output $OUTWORD.
SIGNAL OUTWORD $ OUT[1] TO $ OUT[8]

OUTWORD = ‘B01011100’

ANIN, ANOUT, DIGIN, CHANNEL

Reference Guide

114 of 135

RefGuideR4.1 09.01.00 en

SREAD

2.2.39 SREAD

2.2.39.1 Brief information

The “SREAD” statement breaks a data set (text string) down into its constituent parts.

2.2.39.2 Syntax

SREAD (String1, State, Offset, Format, String2, Value, Var)

Argument Type Explanation

String1 CHAR[] The manipulated, transferred String2 is read from this
character array.

State STATE_T This structure returns information about the state from
the kernel system, which the user can evaluate.
STATE.MSG_NO If an error occurs during

execution of a command, this
variable contains the error
number.

CMD_OK Command successfully
executed

CMD_ABORT Command not successfully
executed

FMT_ERR Incorrect format specification
or non--corresponding variable.

State variable:
HITS Number of correctly written

formats
LENGTH Length of the “%s” format that

occurs first in the format.

Offset INT Specifies the position from which String1 is copied into
String2.

Format CHAR[] The variable “Format” contains the format of the text
that is to be generated.

String2 CHAR[] String1 is copied into the character array.

VALUE INT
REAL
BOOL

Data are pasted into this variable, from String1, with the
format specified.
Boolean values are output as 0 or 1, ENUM values as
numbers.

Var The variables corresponding to “Format”.

2.2.39.3 Description

The “SREAD” command is used for processing character strings. Unlike with “CREAD”, data
is not read from an open channel but from a variable.

The conversion specification for the variable Format has the following structure:

2 Reference section (continued)

115 of 135

RefGuideR4.1 09.01.00 en

%FWGU

The following definitions apply here:

G F Formatting character +, --, #, etc. (optional).

G W Width, specifies the minimum number of bytes that are to be output (optional).

G G Precision, its significance is dependent on the conversion character.
’.’ or ’.*’ or ’.integer’ can be used (optional).

G U Permissible conversion characters: d, e, f, g, i, s, x and %.
The system cannot distinguish between upper and lower--case letters.

By entering a width, you can specify to how many bytes the value is to be extended or
compressed. REAL values are an exception here.

When compressing the value, the high--order bytes are disregarded; the value is extended
by adding zero bytes at the end (little endian format).

If the width is not specified, the internal representation is output: 4 bytes for INTEGER, REAL
and ENUM, one byte for BOOL and CHAR.

The incorrect format can be inferred from the value of HITS (see below).

The types and values are checked in accordance with the following table at run time:

Format

Variable

%d

%i

%x

%f

%e

%g

%s %c

(3)

%1.

hWDHi

r

(3)

%2.

hWDHi

r

(3)

%4.

hWDHi

r

(3)

%.

hWDHi

r

(Signal)
INT

X -- -- X -- -- -- --

INT array -- -- -- -- X X X X

REAL X X -- -- -- -- -- --

REAL
array -- -- -- -- -- -- X X

(Signal)
BOOL (1) X -- -- X -- -- -- --

BOOL
array -- -- -- -- X X X X

ENUM (2) X -- -- X -- -- -- --

ENUM
array -- -- -- -- X X X X

CHAR X -- -- X -- -- -- --

CHAR
array -- -- X -- X -- -- X

Reference Guide

116 of 135

RefGuideR4.1 09.01.00 en

Remarks

G Every value that is not equal to 0 (zero) is converted to TRUE

G The system checks whether the value is a permissible ENUM value. If it is not, reading
is aborted. ENUM begins at 1.

G If there are not enough data available to satisfy the requirements of the format, nothing
is read for this format and the SREAD statement is aborted. The ignored data are,
however, still ready for reading.

G Only as many bytes as can fit into the variable are read. The rest are still ready for
reading. If the array is actually big enough but the number of available bytes is not a
multiple of the size of an array element, the redundant bytes for the following format or
for the next SREAD statement are left for reading.

2.2.39.4 Example

Reading the content of the variable HUGO using formatting characters
INT OFFSET

DECL STATE_T STATE
DECL CHAR HUGO[20]

OFFSET=0
HUGO[]=”1234567890”
SREAD(HUGO[],STATE,OFFSET,%01d%02d,VAR1,VAR2)

;Result: VAR1=1; VAR2=23

When reading with “SREAD”, it is necessary to define a “Format”.

In our example this corresponds to: %01d Number of characters to be read, here
one, therefore in VAR1 the first number
in HUGO, i.e. 1.

%02d Number of characters to be read, here
two, therefore in VAR2 the second and
third numbers in HUGO, i.e. 2 and 3.

2 Reference section (continued)

117 of 135

RefGuideR4.1 09.01.00 en

STRUC

2.2.40 STRUC

2.2.40.1 Brief information

Declaration of structure data types.

2.2.40.2 Syntax

�GLOBAL STRUC Structure_Type_Name
Data_Type1 Component_Name1 ��,..., Component_NameM
,...,
Data_TypeN Component_NameN �,..., Component_NameZ

Argument Type Explanation
GLOBAL The keyword GLOBAL is used to identify the

structure, including in external programs, and may
only be used in data lists.

Structure_
Type_Name

Name of the structure data type.

Data_Type Any data
types

The components of a structure type may be of any
data type. Structure types can also be used as
components; this is called a nested structure type.
Arrays can be used as components of a structure
type if they have the type CHAR and are
one--dimensional. In this case, the array limit follows
the name of the array in square brackets in the
definition of the structure type.

Component_
Name

The individual elements of a structure type are called
structure components. A data type and a name are
defined for each component of a structure. The
component name must be unambiguous within the
structure type.

The keyword GLOBAL, in the context of declaring structure data types, may only be used
in data lists.

2.2.40.3 Description

A structure type is a complex data type consisting of several identical or different data types.
AXIS, FRAME, POS, E6POS and E6AXIS are important predefined structure types. No
structure types having these names may be defined by the user.

As a user, you can freely define further structure types using the structure type declaration
STRUC. The STRUC definition for a freely defined structure type must occur before the
declaration of variables of this type, both in terms of its actual position in the program and
in terms of when it will be reached by the system. The following sequencemust be observed:
first the STRUC declaration, then the declaration of variables.

Reference Guide

118 of 135

RefGuideR4.1 09.01.00 en

The following applies here:

G The predefined data list $CONFIG is located before the data lists that are local to the
module.

G A data list that is local to a module is located before its module.

Accessing components of structure variables

The components of a structure variable can be processed individually. To identify them, a
period, followed by the name of the structure components, is added to the variable name. In
order to be able to access a component of the internal structure in the case of a structure nest,
string the variable name, the name of the external structure components and the name of
the internal structure components together, separating them by means of a period.

Assigning values to structure variables

A value can be assigned individually to each component of structure variables by using a
value assignment. To assign values to several or all of the components of a structure variable
at the same time, use an aggregate. When declaring the structure variable in the data list,
you can assign an aggregate to it as its default initial value.

The names of structure types should end in _TYPE so as to distinguish them from variable
names.

2.2.40.4 Example

Declaration of a structure type W1_TYPE with the components CURRENT, VOLTAGE
and FEED of data type REAL.
STRUC W1_TYPE REAL CURRENT, VOLTAGE, FEED

Declaration of a structure type W2_TYPE with the component CURRENT of data type
REAL and of the array component TEXT[80] of data type CHAR.
STRUC W2_TYPE REAL CURRENT, CHAR TEXT[80]

The following information is to be transferred in a variable to a subprogram for arc
welding:
 Wire speed
 Characteristic
 With/without arc in simulation
DEF PROG()
STRUC W_TYPE REAL WIRE,INT CHARAC,BOOL ARC
DECL W_TYPE W_PARAMETER
W_PARAMETER.WIRE=10.2; Individual initialization of the components
W_PARAMETER.CHARAC=60
W_PARAMETER.ARC=TRUE
W_UP(W_PARAMETER); Call of the welding subprogram...

; Initialization with the aid of an aggregate
W_PARAMETER={WIRE 7.3, CHARAC 50, ARC TRUE}
W_UP(W_PARAMETER); Another call of the welding subprogram...
END

ENUM, DECL

2 Reference section (continued)

119 of 135

RefGuideR4.1 09.01.00 en

SWITCH ... CASE ... ENDSWITCH

2.2.41 SWITCH ... CASE ... ENDSWITCH

2.2.41.1 Brief information

Choice between several statement branches.

2.2.41.2 Syntax

SWITCH Selection_Criterion
CASE Block_Identifier1 �,Block_Identifier2,...
Statements
...
�CASE Block_IdentifierN �,Block_IdentifierM,...
Statements
�DEFAULT
Default_Statements
ENDSWITCH

Argument Type Explanation
Selection_
Criterion

INT, CHAR,
enumeration
type

The selection criterion can be a variable, a function
call or an expression of the specified data type.

Block_
Identifier

INT, CHAR,
enumeration
type

The identifiers for the relevant CASE blocks may
only be integer character or enumeration constants.
The type of the constants must agree with the type
of the selection criterion. There must be at least one
block identifier.

You can specify as many block identifiers as you
want to one program branch. If the same block
identifier is used repeatedly, only the first branch
having this identifier is executed. The remaining
program branches are disregarded. Several block
identifiers are separated from each other by a
comma.

2.2.41.3 Description

The SWITCH statement is a selection instruction for various program branches. A selection
criterion is assigned a certain value ahead of theSWITCHstatement. If this value agreeswith
a block identifier, the corresponding branch is executed and the program jumps straight to
the ENDSWITCH statement without taking subsequent block identifiers into consideration.
If no block identifier agrees with the selection criterion, the DEFAULT statement block is
executed, if there is one; otherwise, the program resumes at the statement after
ENDSWITCH.

Several block identifiers can be assigned to one program branch. On the other hand, it is not
sensible to use one block identifier several times, as only the first branch with the
corresponding identifier will ever be taken into consideration.

Reference Guide

120 of 135

RefGuideR4.1 09.01.00 en

The data types for the selection criterion and the block identifier must correspond.

A SWITCH statement must contain at least one CASE statement; it must be ensured that no
blank lines or comments appear between the SWITCH instruction and the first CASE
statement.

The DEFAULT statement can be omitted. The default statement may only occur once in a
SWITCH statement.

The SWITCH statement cannot be prematurely exited using the EXIT statement.

2.2.41.4 Example

Selection criterion and block identifier are of type Integer. The DEFAULT statement is
used here to output an error message.
SWITCH VERSION

CASE 1
SP_1(); Call of the subprogram SP_1

CASE 2,3
SP_2(); Call of the subprogram SP_2
SP_3(); Call of the subprogram SP_3
SP_3A(); Call of the subprogram SP_3a

DEFAULT
ERROR_SP(); Call of the subprogram ERROR_SP

ENDSWITCH

Selection criterion and block identifier are of type Character. The statement SP_5() is
never executed here because the block identifier “JOHN” appears twice.
SWITCH NAME

CASE ”ALFRED”
SP_1(); Call of the subprogram SP_1

CASE ”BERT”,”JOHN”
SP_2(); Call of the subprogram SP_2
SP_3(); Call of the subprogram SP_3

CASE ”JOHN”
SP_5(); Call of the subprogram SP_5

ENDSWITCH

EXIT, FOR, REPEAT, WHILE, LOOP

2 Reference section (continued)

121 of 135

RefGuideR4.1 09.01.00 en

SWRITE

2.2.42 SWRITE

2.2.42.1 Brief information

The “SWRITE” statement makes it possible to combine several data to form a data set.

2.2.42.2 Syntax

SWRITE (String1, State, OFFSET, Format, String2, VALUE)

Argument Type Explanation

String1 CHAR[] The manipulated String2 is written in this character
array.

State

STATE_T

This structure returns information about the state from
the kernel system, which the user can evaluate.
STATE.MSG_NO If an error occurs during

execution of a command, this
variable contains the error
number.

CMD_OK Command successfully
executed

CMD_ABORT Command not successfully
executed

State variable:
HITS Number of correctly written

formats.

OFFSET INT Specifies the position from which String2 is copied into
String1.

Format CHAR[] The variable “Format” contains the format of the text
that is to be generated.

String2

CHAR[]

This character array is copied into the character array
String1. String2 may also contain formatting characters,
which paste the content of the variable “VALUE” in this
position with the format specified.

VALUE INT
REAL
BOOL

The content of this variable is pasted into String2 with
the format specified.
Boolean values are output as 0 or 1, ENUM values as
numbers.

2.2.42.3 Description

The “SWRITE” command is used for processing character strings. Unlike with “CWRITE”,
data is not written to an open channel, but to a variable.

The conversion specification for the variable Format has the following structure:

%FWGU

The following definitions apply here:

G F Formatting character +, --, #, etc. (optional).

G W Width, specifies the minimum number of bytes that are to be output (optional).

Reference Guide

122 of 135

RefGuideR4.1 09.01.00 en

G G Precision, its significance is dependent on the conversion character.
’.’ or ’.*’ or ’.integer’ can be used (optional).

G U Permissible conversion characters: c, d, e, f, g, i, s, x and %.
The system cannot distinguish between upper and lower--case letters.

By entering a width, you can specify to how many bytes the value is to be extended or
compressed. REAL values are an exception here.

When compressing the value, the high--order bytes are disregarded; the value is extended
by adding zero bytes at the end (little endian format).

If the width is not specified, the internal representation is output: 4 bytes for INTEGER, REAL
and ENUM, one byte for BOOL and CHAR.

The incorrect format can be inferred from the value of HITS (see below).

Format

Variable

%d

%i

%x

%f

%e

%g

%s %c %1.

hWDHi

r

%2.

hWDHi

r

%4.

hWDHi

r

%.

hWDHi

r

(Signal)
INT

X X -- -- -- -- -- --

INT array -- -- -- -- X X X X

REAL -- X -- -- -- -- -- --

REAL
array -- -- -- -- -- -- X X

(Signal)
BOOL X -- -- -- -- -- -- --

BOOL
array -- -- -- -- X X X X

ENUM X -- -- -- -- -- -- --

ENUM
array -- -- -- -- X X X X

CHAR X -- -- X -- -- -- --

CHAR
array -- -- X -- X -- -- X

The “SWRITE” statement, which can be used in programs at the control or robot levels,
triggers an advance run stop.

2 Reference section (continued)

123 of 135

RefGuideR4.1 09.01.00 en

2.2.42.4 Example

Copy the content of the variable HUGO into the variable BERTA
INT OFFSET
DECL STATE_T STATE
DECL CHAR HUGO[20]
DECL CHAR BERTA[20]

OFFSET=0
HUGO[]= “TEST”
BERTA[]=” “
SWRITE(BERTA[],STATE,OFFSET,HUGO[])

;Result: BERTA[]=“TEST”
;as “OFFSET” called by reference,
this variable now has the value 4
;repeat the same command

SWRITE(BERTA[],STATE,OFFSET,HUGO[])
;Result: BERTA[]=“TESTTEST”

OFFSET=OFFSET+1
SWRITE(BERTA[],STATE,OFFSET,HUGO[])

;Result: BERTA[]=“TESTTEST TEST”

Use of formatting characters
INT OFFSET
INT NO
DECL STATE_T STAT
DECL CHAR HUGO[20]
DECL CHAR BERTA[20]

NO=1
OFFSET=0
HUGO[]=”TEST%d”
BERTA[]=” “
SWRITE(BERTA[],STATE,OFFSET,HUGO[],NO)

;Result: BERTA[]=“TEST1“

OFFSET=OFFSET+1
NO=22
SWRITE(BERTA[];STATE,OFFSET,HUGO[],NO)

;Result: BERTA[]=“TEST1TEST22”

Reference Guide

124 of 135

RefGuideR4.1 09.01.00 en

TRIGGER WHEN DISTANCE ... DO

2.2.43 TRIGGER WHEN DISTANCE ... DO

2.2.43.1 Brief information

Path--related triggering of a switching action parallel to the robot motion.

2.2.43.2 Syntax

TRIGGER WHEN DISTANCE=Distance DELAY=Time DO Statement
�PRIO=Priority

Argument Type Explanation
Distance INT Variable or constant specifying where the switching

operation is to occur:

 DISTANCE=0 at the start
 DISTANCE=1 at the end

of the motion block. Only these two values may be
assigned!

Time INT Variable or constant that can be used for delaying
and advancing the switching operation. If the value
is

 positive, execution of the statement is
delayed

 negative, execution of the statement is
advanced by a specified time.

The unit is milliseconds.

Statement The instruction can be

 an assignment of a value to a variable or
 a PULSE statement or
 a subprogram call

Subprograms are executed like interrupt routines.
The desired priority must therefore be specified by
means of the operation PRIO.

Priority INT Variable or constant specifying the priority of the
interrupt. Every Trigger statement with a subprogram
call must be assigned a priority. Priority levels 1...39
and 81...128 are available. Priority levels 40 to 80
are reserved for the system and are allocated
automatically if the value –1 is entered for the
priority. A level 1 interrupt has the highest priority.

2.2.43.3 Description

The TRIGGER statement can be used to execute a subprogram or to assign a value to a
variable parallel to the next robot motion depending on a distance criterion.

The path relation is defined by specifying whether the switching operation is to occur at the
beginning of the motion block or at the end by means of the parameter Distance:

2 Reference section (continued)

125 of 135

RefGuideR4.1 09.01.00 en

G For single blocks, DISTANCE=0 indicates the start point and

G DISTANCE=1 the target point

of the followingmotion. In the case of approximate positioning blocks, DISTANCE=1 signifies
the middle of the following approximate positioning arc. If the previous block is already an
approximate positioning block, DISTANCE=0 signifies the target point of the preceding
approximate positioning arc.

It is possible to delay or advance the statement by a specified period of time using theDELAY
option. The switching point can, however, only be delayed or advanced in so far as it still
remains in the block concerned. An automatic limitation takes place at the block limits. So
in the case of a single block and DISTANCE=1, the switching point cannot be moved past
the target point and further along the path by specifying a positive DELAY value. Specifying
a negative DELAY value ensures that the switching operation has already occurred before
the target point is reached. But even here, the switching point can be advanced no further
than the start point of the motion.

2.2.43.4 Example

Switching operation 130 milliseconds after the start of the next motion; setting of a
signal.
TRIGGER WHEN DISTANCE=0 DELAY=130 DO $OUT[8]=TRUE

Switching operation at the end of the next motion; call of a subprogram with priority 5.
TRIGGER WHEN DISTANCE=1 DO QUOTIENT(DIVIDEND,DIVISOR)PRIO=5

Switching ranges with different motion sequences and DELAY options.
DEF PROG()
...
PTP POINT0
TRIGGER WHEN DISTANCE=0 DELAY=40 DO A=12

; Switching range: 0 -- 1
TRIGGER WHEN DISTANCE=1 DELAY=-20 DO SP1() PRIO=10

; Switching range: 0 -- 1
LIN POINT1
TRIGGER WHEN DISTANCE=0 DELAY=10 DO SP2(A) PRIO=5

; Switching range: 1 -- 2’B
TRIGGER WHEN DISTANCE=1 DELAY=15 DO B=1

; Switching range: 2’B -- 2’E
LIN POINT2 C_DIS
TRIGGER WHEN DISTANCE=0 DELAY=10 DO SP2(B) PRIO=12

; Switching range: 2’E -- 3’B
TRIGGER WHEN DISTANCE=1 DO SP(A,B,C) PRIO=6

; Switching range: 3’B --3’E
LIN POINT3 C_DIS
TRIGGER WHEN DISTANCE=0 DELAY=50 DO SP2(A) PRIO=4

; Switching range: 3’E -- 4
TRIGGER WHEN DISTANCE=1 DELAY=-80 DO A=0

; Switching range: 3’E -- 4
LIN POINT4
...
END

Reference Guide

126 of 135

RefGuideR4.1 09.01.00 en

A=12

1 2
2’B

2’E

3’B

3’E

0

3 4

2’

3’

SP1()

SP2(A)

B=1

SP2(B)

SP(A,B,C)
SP2(A)A=0

INTERRUPT DECL, INTERRUPT, PULSE

2 Reference section (continued)

127 of 135

RefGuideR4.1 09.01.00 en

TRIGGER WHEN PATH ... DO

2.2.44 TRIGGER WHEN PATH ... DO

2.2.44.1 Brief information

Path--related and delayed triggering of a switching action parallel to the robot motion.

2.2.44.2 Syntax

TRIGGER WHEN PATH=Distance DELAY=Time DO Statement
�PRIO=Priority

Argument Type Explanation
Distance INT Specifies, in mm, the distance at which the switching

operation is triggered relative to the target point of
the next motion. If the switching operation is to be
triggered before the target point, the value for
Distance must be negative. If Distance is positive,
the switching operation is triggered after the target
point.
If the target point is approximated, the start point for
Distance is the center point of the approximate
positioning motion.
With a positive value for Distance, it is possible to
shift the switching point as far as the next exact
positioning point programmed after the trigger.
With a negative value for Distance, the switching
point can be shifted back as far as the start point.
If the start point is approximated, the switching point
can be shifted as far as the start of the approximate
positioning range.

Time INT The specification “Time” is used to delay or advance
the switching point relative to the Path specification
by a defined amount of time.
The switching point can only be shifted within the
switching range specified above.
The unit is milliseconds.

Reference Guide

128 of 135

RefGuideR4.1 09.01.00 en

Statement The instruction can be

 an assignment of a value to a variable or
 a PULSE statement or
 a subprogram call�

Subprograms are executed like interrupt routines.
The desired priority must therefore be specified by
means of the operation PRIO.

Priority INT Variable or constant specifying the priority of the
interrupt. Every Trigger statement with a subprogram
call must be assigned a priority. Priority levels 1...39
and 81...128 are available. Priority levels 40 to 80
are reserved for the system and are allocated
automatically if the value –1 is entered for the
priority. A level 1 interrupt has the highest priority.

2.2.44.3 Description

If you are using the path--related TRIGGER statement, you can trigger the switching action
at any position along the path by specifying a distance. As with “Trigger when Distance”, this
again can additionally be delayed or brought forward.

The conditions governing the position on the path at which the distance criterion is evaluated,
dependent on an approximate positioning motion, are shown in the table above. The time
criterion is always calculated from the Path specification. The switching range is again
dependent on the approximate positioning and is shown in the table above.

Instruction sequence:

⋮
LIN POINT2 C_DIS
TRIGGER WHEN PATH = Y DELAY= X DO $OUT[2]=TRUE
LIN POINT3 C_DIS
LIN POINT4 C_DIS
LIN POINT5
⋮

Since the switching point can be shifted from the motion point before which it was
programmed, past all subsequent approximate positioning points, as far as the next exact
positioning point, it is possible to shift the switching point from the approximate positioning
start point POINT2 to POINT5. If POINT2 was not approximated in this sequence of
instructions, the switching point could only be shifted as far as the exact positioning point
POINT2.

2 Reference section (continued)

129 of 135

RefGuideR4.1 09.01.00 en

+

-- +
DELAY X

POINT4POINT3

POINT2

-- POINT5

PATH=0 PATH Y>0

DELAY=0

--

+

DELAY X

PATH Y<0

POINT4
POINT3

POINT2

POINT5

PATH= -20

Switching
point DELAY= -10

Numeric example:

X= --10, Y= --20

INTERRUPT DECL, INTERRUPT, PULSE

Reference Guide

130 of 135

RefGuideR4.1 09.01.00 en

WAIT FOR

2.2.45 WAIT FOR

2.2.45.1 Brief information

Wait for a continue condition.

2.2.45.2 Syntax

WAIT FOR Continue_Condition

Argument Type Explanation
Continue_
Condition

BOOL Logical expression used for specifying the condition
when program execution is to be continued:

 if the logical expression is already TRUE when
WAIT is called, program execution is not halted.

 if the logical expression is FALSE, program
execution is halted until the expression has the
value TRUE.

2.2.45.3 Description

The WAIT statement halts execution of the program and continues it after a specified wait
time. The length of the wait time is determined by the occurrence of the programmed event.

If, due to incorrect formulation, the expression can never take the value TRUE, the
compiler does not recognize this. In this case, execution of the program will be
permanently halted because the program is waiting for a condition that cannot be
fulfilled.

2.2.45.4 Example

Interruption of program execution until $IN[17] is TRUE.
WAIT FOR $IN[17]

Interruption of program execution until BIT1 is FALSE.
WAIT FOR BIT1 == FALSE

WAIT SEC

2 Reference section (continued)

131 of 135

RefGuideR4.1 09.01.00 en

WAIT SEC

2.2.46 WAIT SEC

2.2.46.1 Brief information

Wait times.

2.2.46.2 Syntax

WAIT SEC Wait_Time

Argument Type Explanation
Wait_Time INT, REAL Arithmetic expression used for specifying the

number of seconds that program execution is to be
interrupted for. If the value is negative, the program
does not wait. With small wait times, the accuracy is
determined by a multiple of the interpolation cycle.

2.2.46.3 Description

The WAIT statement halts execution of the program and continues it after a specified wait
time. The length of the wait time is specified in seconds.

2.2.46.4 Example

Interruption of program execution for 17.156 seconds.
WAIT SEC 17.156

Interruption of program execution in accordance with the variable value of V_WAIT in
seconds.
WAIT SEC V_WAIT

WAIT FOR

Reference Guide

132 of 135

RefGuideR4.1 09.01.00 en

WHILE ... ENDWHILE

2.2.47 WHILE ... ENDWHILE

2.2.47.1 Brief information

Program loop; termination condition is checked at the beginning of the loop
(rejecting loop).

2.2.47.2 Syntax

WHILE Repetition_Condition
Statements
ENDWHILE

Argument Type Explanation
Repetition_
Condition

BOOL Logical expression which can contain a Boolean
variable, a Boolean function call or a logical
operation with a Boolean result, e.g. a comparison.

2.2.47.3 Description

The WHILE loop is repeated depending on a condition specified by the user. This repetition
condition is checked before each loop execution. The statement block is never executed if
the repetition condition is not already fulfilled beforehand.

The statement block is executed if the logic condition has the value TRUE, i.e. the repetition
condition is fulfilled. If the logic condition has the value FALSE, the program is resumed with
the next instruction after ENDWHILE. Each WHILE statement must be ended by an
ENDWHILE statement.

2.2.47.4 Example

The loop is executed 99 times. W has the value 100 after exiting the loop.
W=1
WHILE W<100

W=W+1
ENDWHILE

The loop is executed until $IN[1] is true.
WHILE $IN[1]==TRUE

Statements
ENDWHILE

The loop is never executed because the repetition condition is not already satisfied
before the loop is executed. After exiting, W has the value 100.
W=100
WHILE W<100

W=W+1
ENDWHILE

2 Reference section (continued)

133 of 135

RefGuideR4.1 09.01.00 en

EXIT, SWITCH, FOR, REPEAT, LOOP

Reference Guide

134 of 135

RefGuideR4.1 09.01.00 en

2.3 System functions

VARSTATE()

2.3.1 VARSTATE()

2.3.1.1 Brief information

Polls the state of a variable. VARSTATE() is a function with a return value of type
“VAR_STATE”:

ENUM VAR_STATE DECLARED, INITIALIZED, UNKNOWN

The declaration of VARSTATE:

VAR_STATE VARSTATE(CHAR VAR_STR[80]:IN)

2.3.1.2 Syntax

DECL VAR_STATE Variable_Name

Variable_Name = VARSTATE(”Variable”)

Argument Type Explanation
Variable_
Name

VAR_STATE Any variable name.

Variable any Name of a variable for which the state is to be
determined.

2.3.1.3 Description

The function VARSTATE can be used to determine the state of a variable. The return value
of the function can take the Enum constants DECLARED, INITIALIZED or UNKNOWN.

2 Reference section (continued)

135 of 135

RefGuideR4.1 09.01.00 en

2.3.1.4 Example

DEF PROG1()
INT A,B
CHAR STR[5]
A=99
STR[]=“A”

IF VARSTATE(“A”)==#DECLARED THEN
; This IF condition is incorrect as A has not only been declared, but has also already
been initialized.
$OUT[1]=TRUE
ENDIF

IF VARSTATE(“A”)==#INITIALIZED THEN
; This IF condition is correct.
$OUT[2]=TRUE
ENDIF

IF VARSTATE(“A”)==#UNKNOWN THEN
; This IF condition is incorrect.
$OUT[3]=TRUE
ENDIF

IF VARSTATE(“B”)==#DECLARED THEN
; This IF condition is correct.
$OUT[4]=TRUE
ENDIF

IF VARSTATE(”NOTHING”)==#UNKNOWN THEN
; This IF condition is correct, assuming that there is no variable with the name
“NOTHING” in $CONFIG.DAT.
$OUT[5]=TRUE
ENDIF

IF VARSTATE(STR[])==#INITIALIZED THEN
; This IF condition is correct as A has already been initialized.
$OUT[6]=TRUE
ENDIF

END

1

Index

Index -- i

Symbols

:SER_1, 27
:SER_2, 27, 41
$CMD, 27, 48
$CUSTOM.DAT, 27
%FWGU, 49, 115, 121
|, 9

A

ABS, 43, 45
Active reading, 44
ANIN, 20
ANOUT, 22
Areas of validity, 16
Arithmetic operators, 13
ASYNC, 48
AXIS, 12

B

Bit operators, 13
Block structure, 15
BOOL, 11
BRAKE, 24

C

C Programming Language, 45
CCLOSE, 25
CHANNEL, 27
Channel_Name, 27, 41
CHAR, 11
CIRC, 29
CIRC_REL, 34
CMD_ABORT, 25, 43, 48, 121
CMD_OK, 25, 43, 48, 121
CMD_REJ, 48
CMD_STAT, 43, 48
CMD_SYN, 48
CMD_TIMEOUT, 43
Comment, 14
COND, 43, 45
CONFIRM, 38
Constants, 12
CONTINUE, 40
Continuous--path motions, 15
Control structures, 15
Conversion character, 45

COPEN, 41
CP motions, 15
CREAD, 42
CWRITE, 48

D

Data lists, 11
Data types, 11
DATA_BLK, 43
DATA_END, 43
DATA_OK, 43, 48
DECL, 53
Declaration, 14
DEF...END, 57
DEFDAT...ENDDAT, 60
DEFFCT...ENDFCT, 63
DIGIN, 66

E

E6AXIS, 12
E6POS, 12
ENUM, 68
ENUM value, 46, 116
EXIT, 70
Expression, 14
EXT, 71
EXTFCT, 73

F

FMT_ERR, 43, 48
FOR ... TO ... ENDFOR, 76
Format, 44, 45, 49, 114, 121
FPRINTF, 49
FRAME, 12
Functions, 15

G

Geometric operator, 13
GOTO, 78

H

HALT, 79
Handle, 25, 41, 42, 48
HITS, 43, 48, 121

Index

Index -- ii

I

IEEE 754 standard format, 45
IF ... THEN ... ENDIF, 80
Implicit data type assignment, 12

Implicit type conversion, 12
IMPORT... IS, 81
Initialization, 14

INT, 11
INT $DATA_SER1, 42, 44
INT $DATA_SER2, 42, 44

Interface_Name, 27
INTERRUPT, 86
INTERRUPT DECL ... when ... do, 83

K

Keywords, 16

L

LENGTH, 43
LIN, 90

LIN_REL, 94
Literals, 11
Little endian format, 45

Logic operators, 13
LOOP ... ENDLOOP, 96

PTP, 97
PTP_REL, 101

M

Maximum line length, 16
Mode, 43, 48
Modules, 11

MODUS_T, 43, 48
Motion programming, 15

N

Names, 11

O

OFFSET, 121
Offset, 44, 114
Operators, 13

P

Passive reading, 44
Point--to--point motions (PTP), 15
POS, 12
Predefined data types, 12
Priority of operators, 14
PULSE, 103

R

REAL, 11
Relational operators, 13
REPEAT ... UNTIL, 106
RESUME, 108
RETURN, 110

S

SEQ, 43
SER_1, 27, 44
SER_2, 27, 44
SIGNAL, 112
Simple data types, 11
SREAD, 114
State, 25, 43, 45, 48, 114, 121
STATE.MSG_NO, 121
STATE_T, 27, 43, 48
Statement, 14
String1, 114, 121
String2, 114, 121
STRUC, 117, 121
Structure_Variable, 27
Subprograms, 15
SWITCH... CASE... ENDSWITCH, 119
SWRITE, 121
SYNC, 48
System variables, 13

T

Timeout, 44
TRIGGER WHEN DISTANCE ... DO, 124
TRIGGER WHEN PATH ... DO, 127

V

VALUE, 114, 121
Var, 44, 49
Variables, 13
VARSTATE(), 134

Index

Index -- iii

W
Wait, 44
WAIT FOR, 130
WAIT SEC, 131
WHILE ... ENDWHILE, 132

	General
	Typographical conventions
	Graphic conventions

	Reference section
	Fundamentals
	Programs, data lists and modules
	Names and literals
	Data types
	Simple data types
	Implicit type conversion
	Predefined data types
	Implicit data type assignment

	Constants
	Variables
	System variables

	Operators
	Arithmetic operators
	Logic operators
	Relational operators
	Bit operators
	Geometric operator
	Priority of operators

	Declaration
	Initialization
	Expression
	Statement
	Comment
	Motion programming
	PTP motions (PTP = Point--To--Point)

	CP motions (CP = Continuous Path)
	Control structures
	Subprograms
	Functions
	Block structure
	Areas of validity
	Keywords

	Command index
	ANIN
	Brief information
	Syntax
	Description
	Example

	ANOUT
	Brief information
	Syntax
	Description
	Example

	BRAKE
	Brief information
	Syntax
	Description
	Example

	CCLOSE
	Brief information
	Syntax
	Description
	Example

	CHANNEL
	Brief information
	Syntax
	Description
	Example

	CIRC
	Brief information
	Syntax
	Description
	Example

	CIRC_REL
	Brief information
	Syntax
	Description
	Example

	CONFIRM
	Brief information
	Syntax
	Description
	Example

	CONTINUE
	Brief information
	Syntax
	Description
	Example

	COPEN
	Brief information
	Syntax
	Description
	Example

	CREAD
	Brief information
	Syntax
	Description

	CWRITE
	Brief information
	Syntax
	Description
	Example

	DECL
	Brief information
	Syntax
	Description
	Example:

	DEF ... END
	Brief information
	Syntax
	Description
	Example:

	DEFDAT ... ENDDAT
	Brief information
	Syntax
	Description
	Example:

	DEFFCT ... ENDFCT
	Brief information
	Syntax
	Description
	Example

	DIGIN
	Brief information
	Syntax
	Description
	Examples

	ENUM
	Brief information
	Syntax
	Description
	Example

	EXIT
	Brief information
	Syntax
	Description
	Example

	EXT
	Brief information
	Syntax
	Description
	Example

	EXTFCT
	Brief information
	Syntax
	Description
	Example

	FOR ... TO ... ENDFOR
	Brief information
	Syntax
	Description
	Example

	GOTO
	Brief information
	Syntax
	Description
	Example

	HALT
	Brief information
	Syntax
	Description

	IF ... THEN ... ENDIF
	Brief information
	Syntax
	Description
	Example

	IMPORT ... IS
	Brief information
	Syntax
	Description
	Example

	INTERRUPT DECL ... WHEN ... DO
	Brief information
	Syntax
	Description
	Example

	INTERRUPT
	Brief information
	Syntax
	Description
	Example

	LIN
	Brief information
	Syntax
	Description
	Example

	LIN_REL
	Brief information
	Syntax
	Description
	Example

	LOOP ... ENDLOOP
	Brief information
	Syntax
	Description
	Example

	PTP
	Brief information
	Syntax
	Description
	Example

	PTP_REL
	Brief information
	Syntax
	Description
	Example

	PULSE
	Brief information
	Syntax
	Description
	Example

	REPEAT ... UNTIL
	Brief information
	Syntax
	Description
	Example

	RESUME
	Brief information
	Syntax
	Description
	Example

	RETURN
	Brief information
	Syntax
	Description
	Example

	SIGNAL
	Brief information
	Syntax
	Description
	Example

	SREAD
	Brief information
	Syntax
	Description
	Example

	STRUC
	Brief information
	Syntax
	Description
	Example

	SWITCH ... CASE ... ENDSWITCH
	Brief information
	Syntax
	Description
	Example

	SWRITE
	Brief information
	Syntax
	Description
	Example

	TRIGGER WHEN DISTANCE ... DO
	Brief information
	Syntax
	Description
	Example

	TRIGGERWHEN PATH ...DO
	Brief information
	Syntax
	Description

	WAIT FOR
	Brief information
	Syntax
	Description
	Example

	WAIT SEC
	Brief information
	Syntax
	Description
	Example

	WHILE ... ENDWHILE
	Brief information
	Syntax
	Description
	Example

	System functions
	VARSTATE()
	Brief information
	Syntax
	Description
	Example

