1 DSE - RDW

Diese Serviceoption bietet Ihnen eine Reihe von Möglichkeiten zur Zustandsanzeige und Fehlerdiagnose sowie zur Konfigurierung im DSE-RDW – Bereich des Robotersystems.

"DSE" ist die Abkürzung für "Digitale Servo Elektronik", die sich auf der MFC-Karte im Steuerschrank befindet. "RDW" bedeutet "Resolver Digital Wandler". Diese Einheit befindet sich am Roboterfuß.

Durch Anwahl des Menüpunktes "Inbetriebn. - Service - DSE-RDW"

Inbetriebn.	0 Vermessen	1
	<u>1</u> Justieren ►	
	2 Software-Update ►	
	<u>3</u> Service 🕨	0 DSE - RDW
	<u>4</u> E/A Rekonfigurieren	<u>1</u> Lastermittlung

wird dieses Fenster zur Sprachauswahl geöffnet:

Betätigen Sie kurz die Taste "M" auf der Tastatur, um die nachfolgenden Menüs in Deutsch anzuzeigen.

1.1 Hauptmenü

🔀 dserd w	- 🗆 ×					
T 7 × 14 • 🖂 🖻 🗃 🖪 🗛						
DSE / RDW / MFC Tool (V)KR Cl-Software DSERDW-Version	W2.2.1					
[l][M] RDW Tabelle anzeigen [2][N]						
[3][0] RDW Offset und Symmetrie Abgleich [4][D]						
<pre>[5][0] RDW Hardware Konfiguration einstellen [6][R] RDW Phasenverschiebung einstellen [7][S] RDW Kommunikation ueberpruefen [8][T] PowerModul Register anzeigen [9][U] [A] RDW Offset und Symmetrie auf Default Werte Setzen [B] RDW Tabelle auf Festplatte speichern</pre>						
(BSC) Abbruch						
DSE 125us Interrupt Zaehler: EA64_						

In der untersten Zeile wird der Wert des DSE-Interrupt-Zählers angezeigt. Am Hochzählen dieses hexadezimalen Zählers erkennen Sie , daß das DSE-Regelprogramm läuft. Bleibt der Zähler stehen, so läuft das DSE-Regelprogramm nicht korrekt.

Wollen Sie ein Untermenü auswählen, so betätigen Sie bitte die vorangestellte Ziffer, bzw. den vorangestellten Buchstaben auf der Tastatur Ihres KCP. Durch Betätigen der Taste "ESC" können Sie das Programm, bzw. das ausgewählte Untermenü jederzeit sofort verlassen.

Rechts oben im Display wird Ihnen die Versionsnummer des Diagnose-Werkzeugs DSE-RDW angezeigt.

Ändern Sie die Konfigurationseinstellungen nur dann, wenn Sie über ausreichende Kenntnisse über deren Funktion und die Auswirkungen der Änderung verfügen !

Der Inhalt des EEPROMS in der RDW-Einheit kann überschrieben werden. Diese Daten können nicht durch einfaches Booten des Systems wiederhergestellt werden.

1.2 RDW Tabelle anzeigen

	dse	rdv	ł] X
T	7	×	14 💌		1 🖸 🗗 🗛	
Ta	bell	e	von RD	W		
I	ndex	E	Dez.	Hex.		
I.	0]	=	992	2 2602	Motortemperatur Achse 1	
I.	1]	=	982	3 265F	Motortemperatur Achse 2	
I.	2]	=	989	1 26A3	Motortemperatur Achse 3	
I.	3]	=	1014	1 279D	Motortemperatur Achse 4	
I	4]	=	992	0 2600	Motortemperatur Achse 5	
1	5]	=	978	8 263C	Motortemperatur Achse 6	
1	6]	=	3272	1 7FD1	Motortemperatur Achse 7	
I	71	=	3272	1 7FD1	Motortemperatur Achse 8	
I.	8]		205	3 0805	Sinus positives Maximum Achse l	
ſ	9]	=	1632	4 3FC4	Sinus positives Maximum Achse 2	
1	10]	=	1145	8 2002	Sinus positives Maximum Achse 3	
1	11]	=	1054	6 2932	Sinus positives Maximum Achse 4	
I	12]	=	211	3 0841	Sinus positives Maximum Achse 5	
I.	13]	=	933	0 2472	Sinus positives Maximum Achse 6	
ſ	14]	=		0 0000	Sinus positives Maximum Achse 7	
I.	15]	=		0 0000	Sinus positives Maximum Achse 8	
[E	sc]	Ab	bruch	[PgDn]	naechste Seite [PgUp] vorherige Seite [Space] Refresh	1

Haben Sie diese Option ausgewählt, so erscheint der oben abgebildete Bildschirminhalt auf Ihrem Display. Hier werden Ihnen Meß- und Konfigurationsdaten der RDW angezeigt.

Mit den Tasten "PGUP" und "PGDN" kann innerhalb der Tabelle geblättert werden. Diese Funktionen sind im Nummernfeld verfügbar. Dieses muß jedoch zuvor auf Steuerfunktionen umgeschaltet werden. Betätigen Sie dazu die "NUM"-Taste links oben auf der Tastatur. Beobachten Sie dabei die linke Seite der Statuzeile im Display. Der Schriftzug "NUM" muß abgeblendet dargestellt sein.

Betätigen Sie die Leertaste rechts unten auf der Tastatur, um die Anzeige zu aktualisieren. Durch Druck auf die Taste "ESC" können Sie das Untermenü jederzeit sofort verlassen. In Zeile 88 (Index) stehen Daten über die Hardwarekonfiguration der RDW. Die eingestellte Frequenz muß mit der Prozessor- und Prozessorquarzfrequenz genau übereinstimmen, sonst kommt es zu Geberfehlern an allen Achsen. Sollte die Frequenz nicht richtig eingestellt sein, so kann sie unter dem Menüpunkt "5" verstellt werden.

1

1.3 RDW Offset und Symmetrieabgleich

Bevor dieser Menüpunkt angewählt wird, muß der Roboter in <u>ALLEN</u> Achsen verfahren werden.

Mit dieser Funktion wird der Sinus-, Cosinus- Offset- und Symmetrieabgleich der RDW durchgeführt. Es werden damit vorhandene A/D-Wandler-Offsets und Resolver-Asymmetrien herausgerechnet. Der Abgleich erfolgt automatisch mittels der gemessenen Sinus- und Cosinus-Maxima.

Zur korrekten Bestimmung der Sinus-, Cosinus-Maxima müssen alle Achsen über mehrere Motorumdrehungen verfahren worden sein.

Nach dem Abgleich werden die ermittelten Werte zur Kontrolle angezeigt:

💑 dserd w	_ 8 ×
7 × 14 • 🖂 🖻 🔁 🗗 🗛	
ermittelte Offset Werte	
Index Dez. Hex.	
[104] = 476 OlDC Sinus Offset Achse 1	
[105] = 405 0195 Sinus Offset Achse 2	
[106] = 451 01C3 Sinus Offset Achse 3	
[107] = 404 0194 Sinus Offset Achse 4	
[108] = 398 018E Sinus Offset Achse 5	
[109] = 419 01A3 Sinus Offset Achse 6	
[110] = 344 0158 Sinus Offset Achse 7	
[111] = 363 016B Sinus Offset Achse 8	
[112] = 340 0154 Cosinus Offset Achse 1	
[113] = 271 010F Cosinus Offset Achse 2	
[114] = 447 OlBF Cosinus Offset Achse 3	
[115] = 329 0149 Cosinus Offset Achse 4	
[116] = 328 0148 Cosinus Offset Achse 5	
[117] = 335 014F Cosinus Offset Achse 6	
[118] = 280 0118 Cosinus Offset Achse 7	
[119] = 296 0128 Cosinus Offset Achse 8	
Sind Werte in Ordnung ? (J/N)	

Mit der Kontrolle der Offset- und Symmetriewerte sollen nur extreme Unregelmäßigkeiten erkannt werden, wenn z.B. die Achse nicht verfahren wurde oder eine Baugruppe defekt ist. Es sind nur die Achsen relevant, die an der RDW angeschlossen sind.

Die Werte können zwischen –1500 ... 1600 beim Offset und zwischen 18000 ... 22000 bei der Symmetrie liegen und hängen stark vom eingebauten A/D-Wandler, bzw. Multiplexer ab.

Liegen die Werte außerhalb dieser Bereiche, so drücken Sie die Taste "N" auf der Tastatur. Die RDW wird damit wieder auf ihre Grundeinstellungswerte zurückgesetzt.

Betätigen Sie eine andere Taste, so werden die Werte von der RDW übernommen und in ihrem EEPROM gespeichert.

1.4 RDW Hardware Konfiguration einstellen

Wählen Sie diesen Menüpunkt nicht an, diese Funktion ist nur für unseren Service bestimmt.

1.5 RDW Phasenverschiebung einstellen

Wählen Sie diesen Menüpunkt nicht an, diese Funktion ist nur für unseren Service bestimmt.

1.6 RDW Kommunikation überprüfen

Die RDW sendet im 125 µs-Takt 12 Datenworte zur DSE. Mit dieser Funktion kann die Kommunikation zwischen der DSE und der RDW überprüft werden. Alle Werte in dieser Funktion werden hexadezimal angezeigt.

💑 dserd w	_ 8 ×
7 x 14 💽 🗈 🖻 🛃 🚹 🗛	
empfangene RDW Daten;	
Befehl Achsel Achse2 Achse3 Achse4 Achse5 Achse6 Achse7 Achse8	
4004 3139 8FCC 6BE4 7171 64DA BCF9 0000 0000	
Wert Fehler ChkSum	
2712 00C0 80DC	
Kommunikations Fehler Zustand: 0000	
Kommunikations Fehler Zaehler: 0000	
[Enter] Kommunikations Fehler ruecksetzen [ESC] Abbruch	
[Space] Single Step Anzeige [Tab] Daueranzeige	

Befehl

Der letzte Befehl, den die DSE an die RDW gesendet hat. Der hexadezimale Wert dieses Datenwortes wechselt immer zwischen 4000 ... 4007. Die LCD-Anzeige des KCP-Displays ist jedoch zu träge, sodaß man nicht alle Werte nacheinander sehen kann.

Achse nn

Dieses Datenwort zeigt die Resolverpositionen der einzelnen Achse an. Die Werte schwanken normalerweise. Falls eine Achse den Wert Null zeigt, liegt ein Geberfehler vor.

Wert

Die Motortemperatur der Achse 1 bis 8, die von der DSE über den Befehl angefordert wird.

1

Fehler

In diesem Datenwort sind die Geberfehlerbits und EMT-Signale kodiert

Byte 15	Byte 14	Byte 13	Byte 12	Byte 11	Byte 10	Byte 9	Byte 8	Byte 7	Byte 6	Byte 5	Byte 4	Byte 3	Byte 2	Byte 1	Byte 0
für Diagnoss unbedeutend					für Diagnoss unbedeutend		G	Seberf	ehler	bits d	er Ro	botera	achse	en	
Tur	für Diagnose unbedeutend					Sigr	nale	A8	A7	A6	A5	A4	A3	A2	A1

ChkSum

Checksumme aller übertragenen Daten.

Kommunikationsfehler-Zustand

Hier wird Ihnen angezeigt, wenn mehr als drei Übertragungen hintereinander fehlgeschlagen sind. Der Zustand nimmt dann den Wert 0001 an.

Betätigen Sie die Eingabetaste um den Zustand zurückzusetzen.

Kommunikationsfehler-Zähler

Hier werden alle fehlerhaften Übertragungen gezählt.

Durch Betätigung der Leertaste rechts unten auf der Tastatur wird die Anzeige eingefroren, bei wiederholtem Drücken wird die Anzeige aktualisiert. Mit Drücken der "TAB"-Taste wird wieder in die zyklische Anzeige zurückgeschaltet. Diese Funktion ist im Nummernfeld verfügbar. Dieses muß jedoch zuvor auf Steuerfunktionen umgeschaltet werden. Betätigen Sie dazu die "NUM"-Taste links oben auf der Tastatur. Beobachten Sie dabei die linke Seite der Statuzeile im Display. Der Schriftzug "NUM" muß abgeblendet dargestellt sein.

Durch Betätigen der Taste "ESC" können Sie das Programm, bzw. das ausgewählte Untermenü jederzeit sofort verlassen.

1.7 Powermodul Register anzeigen

Die Anzeige auf dem Display variiert mit der Version des Powermoduls.

🔀 dserd w
🎦 7 x 14 🗉 🗈 🛍 🚰 🗛
1. PowerModul vorhanden Id = OF47
PMerror: 0080 => BF ST U <b ble="" bt="" k1="" spu="" u="" u<="" wdf="" =""> KK BR
PMState: 2000 => 36 35 34 33 32 31 BTB SF 3M4 3M3 3M2 3M1
CurrCal: 0 <u>5</u> 55 => M6 L6 N5 L5 M4 L4 N3 L3 M2 L2 M1 L1
CurrErr: 003F => I>6 I>5 I>4 I>3 I>2 I>1 286 285 284 283 282 281
BusVolt: 0003 == 9 Wolt KKTemp = DD SchTemp = 4F
DSE Parity Zaehler: 0 PM Parity: 0000
MFC-Bingangs Register:
Eingaenge 1-8 : FF => Low Aktiv (Invertiert !!)
Eingaenge 9-16 : FF => Low Aktiv (Invertiert !!)
Sicherheitslogik : D8 => 0 Auto Test Zust2 Zust1 NotAusD NotAus2 NotAus1
Status Register : F9 => WDT SADR 1 OTEMP ErrO2 ErrO1 DseVor2 DSEVor1
ISoci Sindle Stan Angelde (Tabl Devergedde

Mit dieser Funktion werden Ihnen die hexadezimalen Werte der Register von Powermodul und MFC angezeigt. Die Register des Powermoduls werden selbstverständlich nur dann angezeigt, wenn das Powermodul auch tatsächlich vorhanden ist. Hinter dem Text *"Powermodul vorhanden"* wird die Identifikationsnummer des eingebauten Powermodules angezeigt. Über diese Nummer kann die Robotersoftware die unterschiedlichen Versionen der verwendeten Powermodule unterscheiden.

Die Identifikationsnummer hat das Format:

unbenutzt	unbenutzt	Fertigungsstand	Version
0	F	0	5

Folgende Identifikationsnummern wurden bis heute bei unseren Industrierobotern verbaut:

OFFF	PM6/600
0F47	PM6/600 Redesign Fertigungsstand 4
0F05	PM1, PM2
0F15	PM1, PM2 Redesign

1.7.1 Die einzelnen Fehlerbits

Die Powermodulregister sind 12 Bit breit. Die Bedeutung jedes Fehlerbits ist mit einem Kürzel hinter dem hexadezimalem Wert aufgelistet.

1

PMerror						
Offset	Kürzel	Funktion, Bedeutung	HIGH-Level steht für			
Bit 0	BR	Bremsenfehler: Kurzschluß, Leer- lauf für alle Achsen. Es ist nur ein Bremsentreiber für alle 6 Achsen vorhanden.	Fehler			
Bit 1	КК	Kühlkörpertemperatur überschrit- ten.	Fehler			
Bit 2	U >	Max. Zwischenkreisspannung überschritten, Überspannung.	Fehler			
Bit 3	U <	Min. Hilfsspannung 27V unter- schritten, Unterspannung.	Fehler			
Bit 4	K1	Schaltzustand Antriebsschütz K1.	Ein			
Bit 5	SPU	Spannungsüberwachung Nieder- spannung, Spannungsausfall.	Spannungsausfall			
Bit 6	BLE	Ballastschalterschaltzustand.	Ballastschalter Ein			
Bit 7	WDF	Watchdogfehler.	kein Fehler			
Bit 8	BT	Übertemperatur Ballastwider- stand.	Fehler			
Bit 9	U < B Akkuspannung für laufende Puffe- rung zu niedrig. Fe		Fehler			
Bit 10	ST	Schrankübertemperatur, Reihen- schaltung Schranktemperaturfüh- ler und Fühler am Lüfter über Po- wermodul.	Fehler			
Bit 11	BF	Ballastschalter zu lange ein.	Fehler			

PMStat	PMState							
Offset	Kürzel	Funktion, Bedeutung	HIGH-Level steht für					
Bit 0	SM1	Eingang 1, schnelles Messen.						
Bit 1	SM2	Eingang 2, schnelles Messen.						
Bit 2	SM3	Eingang 3, schnelles Messen.						
Bit 3	SM4	Eingang 4, schnelles Messen.						
Bit 4	SF	Summenfehler.	Fehler					
Bit 5	BTB	Zwischenkreisspannung Lade- phase beendet (Hochlauf), Zwi- schenkreisspannung über 60V (Abschalten: Bremsen mit gelade- nem Zwischenkreis).	Zwischenkreis > 60V					
Bit 6	S1	Stromregler der Achse 1 in Sätti- gung, ohne Reglerfreigabe ist der Zustand zufällig.	Sättigung erreicht					

Diagnosesoftware

Bit 7	S2	Stromregler der Achse 1 in Sätti- gung, ohne Reglerfreigabe ist der Zustand zufällig.	Sättigung erreicht
Bit 8	S3	Stromregler der Achse 1 in Sätti- gung, ohne Reglerfreigabe ist der Zustand zufällig.	Sättigung erreicht
Bit 9	S4	Stromregler der Achse 1 in Sätti- gung, ohne Reglerfreigabe ist der Zustand zufällig.	Sättigung erreicht
Bit 10	S 5	Stromregler der Achse 1 in Sätti- gung, ohne Reglerfreigabe ist der Zustand zufällig.	Sättigung erreicht
Bit 11	S6	Stromregler der Achse 1 in Sätti- gung, ohne Reglerfreigabe ist der Zustand zufällig.	Sättigung erreicht

Bit 12An diesen beiden Bits im Register des 1. Powermoduls kann die Software er-
kennen, welcher Typ von Powermodul sich an der Schnittstelle befindet. Ist das
Powermodul vorhanden, so steht "*n. Powermodul vorhanden*" im Display und
die Werte zeigen die aktuellen Inhalte des Powermodul-Registers an. Ist das
Powermodul nicht vorhanden, steht "*n. Powermodul nicht vorhanden*" im Dis-
play und die Werte sind ungültig.Bit1213Bit1213O01. und 2. Powermodul vorhanden

	play und die Werte sind ungultig.					
	Bit	12	13	Bedeutung		
Bit 13	Wert	0	0	1. und 2. Powermodul vorhanden		
		0	1	Nur 2. Powermodul vorhanden		
		1	0	Nur 1. Powermodul vorhanden		
		1	1	kein Powermodul vorhanden		

Offset	Kürzel	Funktion, Bedeutung	HIGH-Level steht für			
Wenn beide Bits einer Achse Low sind, so ist die Achse nicht gesteckt. Sind beide Bits einer Achse High, liegt ein Fehler vor.						
Bit 0	L1	Stromkalibierung der Achse 1	auf niedrigen Strombereich gesteckt			
Bit 1	M1	Stromkalibierung der Achse 1	auf hohen Strombereich gesteckt			
Bit 2	L2	Stromkalibierung der Achse 2	auf niedrigen Strombereich gesteckt			
Bit 3	M2	Stromkalibierung der Achse 2	auf hohen Strombereich gesteckt			
Bit 4	L3	Stromkalibierung der Achse 3	auf niedrigen Strombereich gesteckt			
Bit 5	M3	Stromkalibierung der Achse 3	auf hohen Strombereich gesteckt			
Bit 6	L4	Stromkalibierung der Achse 4	auf niedrigen Strombereich gesteckt			
Bit 7	M4	Stromkalibierung der Achse 4	auf hohen Strombereich gesteckt			
Bit 8	L5	Stromkalibierung der Achse 5	auf niedrigen Strombereich gesteckt			
Bit 9	M5	Stromkalibierung der Achse 5	auf hohen Strombereich gesteckt			
Bit 10	L6	Stromkalibierung der Achse 6	auf niedrigen Strombereich gesteckt			
Bit 11	M6	Stromkalibierung der Achse 6	auf hohen Strombereich gesteckt			

Fehler

Fehler

Fehler

Fehler

Fehler

CurrErr Offset Kürzel Funktion, Bedeutung HIGH-Level steht für ... Zusatzachsen können hier nur dann freigegeben werden, wenn das Powermodul mit einer Zusatzachsen-Freigabeplatine ausgerüstet ist. Bit 0 ZS1 Freigabe der Zusatzachse Zusatzachse ist freigegeben Bit 1 ZS2 Freigabe der Zusatzachse Zusatzachse ist freigegeben ZS3 Bit 2 Freigabe der Zusatzachse Zusatzachse ist freigegeben Bit 3 ZS4 Freigabe der Zusatzachse Zusatzachse ist freigegeben Bit 4 ZS5 Freigabe der Zusatzachse Zusatzachse ist freigegeben Bit 5 ZS6 Freigabe der Zusatzachse Zusatzachse ist freigegeben Bit 6 | > 1Überstrom an Achse 1 Fehler

1

BusVolt

Bit 7 Bit 8

Bit 9

Bit 10

Bit 11

I > 2

I > 3

I > 4

1 > 5

l > 6

Hexadezimaler Wert der Zwischenkreisspannung in Volt

Überstrom an Achse 2

Überstrom an Achse 3

Überstrom an Achse 4

Überstrom an Achse 5

Überstrom an Achse 6

KKTemp

Hexadezimaler Wert für Kühlkörpertemperatur-Bit

SchTemp

Hexadezimaler Wert für Schranktemperatur-Bit

DSE Parity Zähler

Im diesem Zähler wird die Anzahl der Paritätsfehler angezeigt, die beim Lesen der Powermodul-Register auf der DSE erkannt wurden. Der 16 Bit breite Zähler wird in hexadezimaler Form dargestellt.

PM Parity

Im diesem Zähler wird die Anzahl der Paritätsfehler angezeigt, die beim Schreiben in die Powermodul-Register auf der DSE erkannt wurden. Der 8 Bit breite Zähler wird in hexadezimaler Form dargestellt. Dieser Zähler sollte normalerweise stehenbleiben oder nur sehr sehr selten hochzählen.

Bei geschalteter Reglerfreigabe treten häufiger Störungen auf dem Datenbus auf. Der Zähler kann dann schneller hochlaufen.

1.7.2 MFC-Register

Eingänge 1-8, Eingänge 9-16

Diese Register zeigen die Zustände der MFC-Eingänge 1 ... 6.

Die Pegel werden invertiert angezeigt.

Sicherheitslogik						
Offset	Kürzel	Funktion, Bedeutung	LOW-Level steht für			
Bit 0	NotAus1	Abbild des NOT-AUS-Kreises 1	Kreis offen			
Bit 1	NotAus2	Abbild des NOT-AUS-Kreises 2	Kreis offen			
Bit 2	NotAusD	NOT-AUS-Verzögerung	Verzögerung aktiv			
Bit 3	Zust1	Abbild des Zustimmungtaster-Kreises 1	Kreis geschlossen			
Bit 4	Zust2	Abbild des Zustimmungtaster-Kreises 1	Kreis geschlossen			
Bit 5	Test	Abbild der Betriebsartengruppe "TEST"	Gruppe angewählt			
Bit 6	Auto	Abbild der Betriebsartengruppe "AUTO"	Gruppe angewählt			
Bit 7	0	-	_			

Statusregister					
Offset	Kürzel	Funktion, Bedeutung	LOW-Level steht für		
Bit 0	DSEVor1	Abbild der 1. DSE	Kreis offen		
Bit 1	DSEVor2	Abbild der 2. DSE	Kreis offen		
Bit 2	Err01	Überwachung der Ausgänge 18	Kurzschluß		
Bit 3	Err02	Überwachung der Ausgänge 916	Kurzschluß		
Bit 4	OTEMP	Abbild der Temperatur des Steuerungsrechners	Überhitzt		
Bit 5	1	-	-		
Bit 6	SADR	MFC-Basisadresse	h280 [<i>HI h260</i>]		
Bit 7	WDT	MFC-Watchdog	Angesprochen		

Durch Betätigung der Leertaste rechts unten auf der Tastatur wird die Anzeige eingefroren, bei wiederholtem Drücken wird die Anzeige aktualisiert. Mit Drücken der "TAB"-Taste wird wieder in die zyklische Anzeige zurückgeschaltet. Diese Funktion ist im Nummernfeld verfügbar. Dieses muß jedoch zuvor auf Steuerfunktionen umgeschaltet werden. Betätigen Sie dazu die "NUM"-Taste links oben auf der Tastatur. Beobachten Sie dabei die linke Seite der Statuzeile im Display. Der Schriftzug "NUM" muß abgeblendet dargestellt sein.

Durch Betätigen der Taste "ESC" können Sie das Programm, bzw. das ausgewählte Untermenü jederzeit sofort verlassen.

1.8 RDW Offset und Symmetrie auf Defaultwerte setzen

Mit diesem Menüpunkt können die Offset- und Symmetriewerte wieder auf die Defaultwerte gesetzt werden. Dies sollte immer vor einem RDW Abgleich geschehen.

1

Abgleich der RDW

- G RDW auf Defaultwerte setzen
- G Alle Achsen handverfahren, Richtwert: mind. 10 Grad pro Achse
- G Offset- und Symmetrieabgleich durchführen

1.9 RDW-Tabelle auf Festplatte speichern

Mit Auswahl dieser Option wird der Inhalt der RDW-Tabelle auf der Festplatte gespeichert.

